The Chemical and Biological Microsystems Society (CBMS) is a non profit organization without membership, aiming at the promotion and advancement of science and engineering in the field of chemical and biological microsystems, and to stimulate the exchange of ideas and information between academic, industrial, and government researchers.

Based in the south west of France, Emulseo has been founded in 2018 by Jean-Christophe Baret, Valérie Taly and Florine Maes. Emulseo develops formulations for microfluidic technology such as the surfactant for droplet-based microfluidics named FluoSurf. Emulseo comes from Jean-Christophe Baret Lab at the Centre de Recherche Paul Pascal in Pessac. Emulseo has thus a strong expertise in microfluidics and aims to help and collaborate with customers in improving and developing new products.

Fluigent's broad range of solutions for use in microfluidic technologies and nanofluidics applications offer greater control, automation, precision, and ease of use. If you're seeking to replace high-precision syringe pumps or other conventional instruments, discover the LineUp series, which offer an excellent solution that minimize contamination and ensure full control of flow rates without the need of a computer.

Nanoscribe GmbH develops and provides 3D printers and maskless lithography systems for microfabrication as well as photoresins and process solutions. Today’s market and technology leader for additive microfabrication was founded in 2007 as a spin-off of the Karlsruhe Institute of Technology (KIT, Germany) and has evolved to a medium-sized company with more than 70 employees and subsidiaries in China and the United States. Worldwide, more than 1,500 scientists at top universities and pioneer companies benefit from Nanoscribe’s groundbreaking technology and award-winning solutions for 3D microfabrication. Rapid and dedicated customer support, as well as a worldwide service, are a matter of course for us.
RAN Biotechnologies, Inc.
100 Cummings Center, Suite 434J
Beverly, MA 01915 USA
phone: 1-833-726-2661
info@ranbiotechnologies.com
www.ranbiotechnologies.com
RAN Biotechnologies provides reagents and kits for microfluidics, including: Gold standard FluoroSurfactants for water-in-oil emulsions; Customizable Hydrogel Beads: Chip-Free Engineered Droplet Generation kits. All our products combine: High purity w Reproducibility w Material Customization w Custom Packaging w Experienced Technical and Scientific Support.

Zurich Instruments AG
Technoparkstrasse 1
Zurich, 8049 SWITZERLAND
phone: +41-44-515-0410
info@zhinst.com
www.zhinst.com
Zurich Instruments is a manufacturer of test & measurement equipment for advanced research & development applications. The instruments use LabOne® control software that sets a benchmark for efficient instrumentation control and a good user experience. This progressive approach reduces the complexity of laboratory setups, removes sources of problems and supports new measurement strategies that accelerate the progress of research. Zurich Instruments' portfolio comprises lock-in amplifiers, arbitrary waveform generators, impedance analyzers, quantum computing control systems, phase-locked loops and boxcar averagers.

NanoLitre Benefactor
BEOOnChip
Ceminem. C/Mariano Esquillor S/N
Zaragoza, 50018 SPAIN
phone: +34-65-516-1691
info@beonchip.com
www.beonchip.com

Biond Solutions B.V.
Mekelweg 4
Delft, 2628CD THE NETHERLANDS
phone: +31-62-831-3367
info@biondteam.com
www.gobiond.com
Empowering biological innovation by engineering microchips through nourishing, stimulating and monitoring cells. Bi/ond platform is versatile, as it is qualified for culturing complex 3D tissues (organoids, ex vivo tissue, spheroids, microtissues) as well as for tissue-tissue interface models. Our system consists of six microfluidic chips (inCHIPit) inserted on a six-well plate (comPLATE), designed for a seamless fit. Get in touch with us for a demo.
Dolomite Microfluidics
1 Anglian Business Park
Royston, SG8 5TW UK
phone: +44-1763-252-149
info@dolomite-microfluidics.com
www.dolomite-microfluidics.com
Dolomite Microfluidics is the industry leader in the design and manufacture of high quality innovative microfluidic products. The company offers a range of microfluidic systems, modules and components - including pumps, chips, connectors, temperature controllers, sensors, accessories and custom-made components - as well as software for analysis or automation. Modularity, ease of use, innovation and scalability are common to all Dolomite products, which are used across a broad range of applications in biology, drug discovery, chemistry, food, cosmetics and academia. Dolomite is a part of the Blacktrace group of companies, a world leader in Productizing Science®, and has offices in the UK, USA, Japan, Hanoi as well as a worldwide network of distributors.

Heidelberg Instruments, Inc.
2539 W. 237th Street, Suite A
Torrance, CA 90505 USA
phone: 1-310-212-5071
info@himt.de
www.himt.de
Heidelberg Instruments is a world leader in the production of high-precision direct write lithography systems and maskless aligners. Due to their flexibility, these systems are used in research, development and industrial applications for direct writing and photomask production by some of the most prestigious universities and industry leaders in the areas of MEMS, BioMEMS, nano technology, ASICS, TFT, plasma displays, micro optics, and many other related applications.

HiComp Microtech (Suzhou) Co., Ltd.
F4, NW-17, Nanopolis Suzhou
99 Jinji Lake Avenue, Suzhou Industrial Park
Suzhou, 215000 CHINA
phone: +86-512-8781-6000
info@hicomp.com
www.hicomp.com
The HICOMP MicroTech(Suzhou) Company Limited is an original design manufacturer of high quality components based on cutting-edge micro/nano technologies founded in 2014. We have developed exclusive technologies to produce components with the smallest feature of several micrometers in polymer, glass, ceramic and metal substrates. The target markets include microfluidic and biochips, MEMS and advanced packaging, with a focus on the microfluidics enabled products. Since 2017, we have transformed from a parts supplier to a comprehensive lab-on-a-chip product development and manufacturing partner, providing custom solutions for applications in immunology, clinical chemistry, DNA sequencing and cell manipulation.

microfluidic ChipShop GmbH
Stockholmer Strasse 20
Jena, THURINGIA 07747 GERMANY
phone: +49-36-4134-7050
inquiries@microfluidic-ChipShop.com
www.microfluidic-chipshop.com
microfluidic ChipShop is one of the leading microfluidic service providers and is an established OEM partner in microfluidic cartridge/system development and manufacturing for the diagnostic, pharma and the life science industry. A unique feature of the company is its catalogue with off-the-shelf microfluidic components and systems, allowing a low-cost rapid access to lab-on-a-chip technologies. microfluidic ChipShop offers complete system (cartridge, instrument and assay) development and manufacturing in an ISO 13485 environment.

Micronit Microtechnologies BV
Colosseum 15
Enschede, 7521 PV THE NETHERLANDS
phone: +31-53-850-6850
info@micronit.com
www.micronit.com
Newormics
6101 Highland Campus Drive
Building 4000, Room 4 2250
Austin, TX 78752 USA
support@newormics.com
www.newormics.com

Newormics develops high-throughput, high-content, microfluidics-based imaging systems for toxicology screens and disease modeling, using small model organisms such as C. elegans, and tissue organoids. Our flagship product, the *vivo*Chip®, is a microfluidics platform for immobilizing up to ~4,000 C. elegans from 96 individually treated populations within 3 minutes, for high-resolution imaging of cellular and sub-cellular features. *vivo*Screen® is a fully integrated fluorescence microscopy system for automated high-speed imaging of whole animals in the chip. It provides software to streamline data analysis with a user-friendly GUI for phenotypic scoring, and records dose-dependent effects for toxicity assessment with high statistical power.

OAI
464 South Hillview Drive
Milpitas, CA 95035 USA
phone: 1-408-232-0600
sales@oainet.com
www.oainet.com

With over 45 years of experience in the engineering and manufacturing of precision, reliable, and cost-effective lithography solutions, OAI offers a complete series of Mask Aligners, UV Light Sources, and UV Measurement Instrumentation for the Microfluidics, BioTech, MEMS, and Semiconductor Industries. OAI’s UV LED Light Source features the same uniformity, intensity and collimation as a standard UV Light Source. This year, OAI introduces for Biotechnology, a Production Mask Aligner with Auto Mask Changer which allows for multiple exposures on the same level and holds up to 100 masks. OAI maintains sales and service worldwide.

Sensific GmbH
Kurze Lempfen 1
Ulm, 89075 GERMANY
phone: +49-160-9627-0362
info@sensific.de
www.sensific.de

Sensific develops innovative measurement technology for research and development. Our first product ODIN is a user-friendly imaging based high-throughput analysis and control system for microfluidics. It analyzes objects fully automatic and controls manipulation devices like sorting gates based on predefined criteria or a machine learning process. It measures more than 30 parameters like size, brightness, granularity, circumference and speed of any passing object like droplets, particles, cells or even complex structures and distinguishes different populations like droplets with certain numbers of encapsulated objects. ODIN works with any optical contrast like bright-field, phase-contrast or fluorescence and integration in most experiments is easy.

Zeon Specialty Materials Inc.
25 Metro Drive, #238
San Jose, CA 95110 USA
phone: 1-408-641-7889
www.zeonsmi.com

ZEON SPECIALTY MATERIALS (ZSM) is a wholly owned subsidiary of ZEON CORPORATION, a global world leader in the production of specialty elastomers, polymers, and chemicals. ZEON manufactures ZEONEX and ZEONOR Cyclo Olefin Polymer; an ultra-pure, inert, low-fluorescence polymer with glass-like transparency making them ideal choices for optical, diagnostic and life science devices. With a headquarters in San Jose, CA ZSM has positioned itself to not only provide distribution and technical support for COP but also provide microfluidic prototyping services to further aid companies in their development process.
AcouSort AB
Medicon Village, Building 406
Lund, 22381 SWEDEN
phone: +46-707-877-061
sales@acousort.com
www.acousort.com
AcouSort provides innovative products and solutions for automated preparation of biological samples for researchers and life-science companies. The core technology is acoustofluidics where a combination of microfluidics and sound waves is used to separate blood into its components, to isolate and purify cells and extracellular vesicles and to perform rapid biochemical reactions. With our adaptable technology, sample preparation is tailored to address a wide range of applications - from early biomarker discovery to point of care diagnostics. AcouSort offers stand-alone products for automated sample handling, custom solutions through joint development and off-the-shelf OEM modules for integration in analytical instrument.

Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology
1 New York Plaza
New York, NY 10004 USA
phone: +31-7865-76100
davide.migliorini@springernature.com
https://www.springer.com/journal/10544
Biomedical Microdevices: BioMEMS and Biomedical Nanotechnology is an interdisciplinary periodical devoted to all aspects of research in the medical diagnostic and therapeutic applications of Micro-Electro-Mechanical Systems (BioMEMS) and nanotechnology for medicine and biology. Subjects of interest include the design, characterization, testing, modeling and clinical validation of microfabricated systems, and their integration on-chip and in larger functional units. The specific interests include systems for neural stimulation and recording, bioseparation technologies, biosensors, and micro/nanotechnologies for cell and tissue research, tissue engineering, cell transplantation, and the controlled release of drugs and biological molecules.

Biophysical Tools GmbH
Deutscher Platz 5b
Leipzig, 04103 GERMANY
phone: +49-341-3929-8131
info@biophysical-tools.de
www.biophysical-tools.de
Biophysical Tools supports you all around the topic of ultra-precise and fast flow control of fluids in microfluidics / mesofluidics and offers further innovative devices for various biophysical applications. Benefit from our expertise in ultra-precise and -fast flow control of fluids in Microfluidics and Mesofluidics, which is the focus of our leading product groups - a pressure-driven flow control system and multi-channel perfusion system. Our novel products such as tissue stretcher, mobile microscope module and diverse accessories will enhance the usability of your microfluidic setups. Furthermore, we offer numerical simulations of flows, design of microfluidic chips, rapid prototyping and experiment support.

CADworks3D
27 Queen Street, East Suite 1401
Toronto, ON M5C 2M6 CANADA
phone: 1-416-368-7266
www.cadworks3d.com
CADworks3D was established in 2018 with the intention of providing exceptional user support, cost effective and microfluidic specific 3D printing solutions. By combining groundbreaking 3D printer technology with an in house 3D materials development team, CADworks3D are able to provide 3D solutions to the unique needs of microfluidic researchers, startups and established bio-tech firms. The team at CADworks3D brings together over 20 years of experience in CAD, 3D printing and 3D materials development to empower institutions and research labs with the best technical support.
The Center of BioModular Multi-Scale Systems for Precision Medicine (CBM²) is an NIH-funded national Biotechnology Resource Center with expertise in designing, fabricating, and delivering to the biomedical community plastic-based microfluidic and nanofluidic devices that utilize liquid biopsies for disease detection and management. The Center seeks opportunities to disseminate its Core Technologies through Collaborative and Service Projects with clinicians and researchers. CBM² invites researchers at all levels to participate in its Visiting Scholar Program, to learn more about plastic-based microfluidics/nanofluidics for a variety of applications. With a strong infrastructure of equipment, expertise, and training programs, we are ready to help you.

Elsevier
Radarweg 29
Amsterdam, 1043 NX THE NETHERLANDS
www.elsevier.com
Elsevier, a global leader in information and analytics, helps researchers and healthcare professionals advance science and improve health outcomes for the benefit of society. Growing from our roots in publishing, we have supported the work of our research and health partners for more than 140 years. Elsevier offers knowledge and valuable analytics that help our users make breakthroughs and drive societal progress. Digital solutions such as ScienceDirect, Scopus, SciVal, ClinicalKey and Sherpath support strategic research management, R&D performance, clinical decision support, and health education. Elsevier publishes over 2,500 digitized journals, including The Lancet and Cell; our 39,000 eBook titles; and our iconic reference works, such as Gray's Anatomy. Elsevier is part of RELX, a global provider of information-based analytics and decision tools for professional and business customers.

Elvesys
172 Rue de Charonne
Paris, 75011 FRANCE
phone: +1-33-188-334-368
contact@elveflow.com
www.elveflow.com
ELVEFLOW is an innovative company with expertise in flow management and microfluidic instrumentation. ELVEFLOW proposes the world's widest brand of microfluidic flow control products. The main mission of the company is to provide state-of-the-art instruments to scientists to help them achieve major advances in their research field. The second mission is to facilitate the access of non-specialists (chemists, biologists) to microfluidics through the development of "plug and play" all-inclusive packs dedicated to specific applications. ELVEFLOW is actively involved in international research projects and the management team has created 9 innovative companies related to microfluidics in the last 8 years.

Hahn-Schickard
Georges-Köhler-Allee 103
Freiburg, 79110 GERMANY
phone: +49 761 203-73200
info@Hahn-Schickard.de
www.Hahn-Schickard.de
Lab-on-a-chip - from the initial idea to the final product: Hahn-Schickard is your one-stop-shop, offering the whole R+D workflow for development, test and pilot production. At its site in Freiburg (Germany), the focus is on customized solutions for research and molecular point-of-need diagnostics. The R+D service provider solves your challenges in miniaturized liquid handling, assay development and instrumentation. With a pilot line, Hahn-Schickard can deliver Lab-on-a-chip cartridges for validation and market entry supporting the product visions of its customers even more effectively.
Hexano
PO Box 29029, Moncton North
Moncton, E1G1A0 CANADA
phone: 1-800-695-0021
info@hexano.net
www.hexano.net
Hexano brings your microfluidic chips out of the lab and commercializes it. We focus on mass manufacturing through plastic injection. We also offer prototyping services so you can migrate from your PDMS chips to thermoplastics. Choose Hexano as your manufacturing partner and we'll handle the rest.

IamFluidics BV
Enschede, 7522 THE NETHERLANDS
phone: +31-53-234-0044
info@iamfluidics.com
www.iamfluidics.com

Icomes Lab Co., Ltd.
2-4-23, Kitaiioka
Morioka, 020-0857 JAPAN
phone: +81-19-601-8157
globalinfo@icomescosjp.com
www.icomescosjp.com
Micro Actuator x Liquid Handling. Unique liquid handling device and Made in Japan

Jobst Technologies GmbH
Engesserstrasse 4b
Freiburg, 79108 GERMANY
phone: +49-761-6129-5473
customer-care.jobst@ist.ag.com
www.jobst-technologies.com
Jobst Technologies GmbH is offering its core competencies in the overlap between microsystems technology, (bio)electrochemical analytics and microfluidics to its customers. The company is unrivaled competence leader in bioanalytical applications with OEM products in clinical routine continuous monitoring and biotechnology as well as micro/nano fluidic systems. B2B contract development together with EU research projects provides permanent extension of the company’s technology and product portfolio. "Rational technology integration aiming at bio-micro convergence" is a slogan created by Gerhard. Jobst, CEO of Jobst Technologies. Adding a strong dedication to customer satisfaction this leads to real world systems of outstanding reliability and stability.

LabSmith
5981 Graham Court
Livermore, CA 94550 USA
phone: 1-925-292-5164
info@labsmith.com
www.labsmith.com
LabSmith, designs and manufactures laboratory tools for microfluidics and microbiology. LabSmith products control all aspects of experimentation, including microfluidic fluid routing and automation components, high voltage supplies for electrophoresis and gel electrophoresis, and inverted fluorescence video microscopes for capturing and quantifying key events. For research and OEM applications, LabSmith products and software work together to take the headaches out of experimental setup, so you can focus on science.

µFluidic - Nehir Biyoteknoloji Ltd.
ODTU-OSTIM Teknokent, 1308 Cd, No-6-2B8
Yenimahalle, 06374 TURKEY
phone: +90-312-386-0423
hello@ufluidic.com
www.uFluidic.com
PreciGenome's innovative microfluidic pressure/flow controller and high speed imaging system are the most convenient tools for a variety of applications and system integration. Combining them with valves, tubing and fitting, reservoir kits, and microfluidic chips, we successfully demonstrated perfusion systems (multiple reagent dispensing or media recirculating perfusion), droplet generation systems, single cell encapsulation systems, nanoparticle synthesis systems, and organ-on-a-chip systems, etc. PreciGenome also offers custom design and OEM solutions for customers who need microfluidic instrument development and production.

Research, a Science Partner Journal
1200 New York Avenue, NW
Washington, DC 20005 USA
phone: 202-326-6417
spi.sciencemag.org/journals/research/
The Science Partner Journal Research is an online Open Access journal distributed by the American Association for the Advancement of Science (AAAS) in association with Science and Technology Review Publishing House, the publishing house under the leadership of China Association for Science and Technology (CAST). Research provides an international platform for academic exchange, collaboration and technological advancements. The journal publishes fundamental research in the life and physical sciences as well as important findings or issues in engineering and applied science.

Science Advances/AAAS
1200 New York Avenue, NW
Washington, DC 20005 USA
phone: 1-202-326-6417
scienceadvanceseditorial@aaas.org
advances.sciencemag.org

Science Advances is the American Association for the Advancement of Science's (AAAS) gold open access journal, publishing research papers and reviews in all areas of science. Its mission is to provide fair, fast, and expert peer review and a vetted selection of research, freely available to all readers. Science Advances extends the capacity of Science magazine to identify and promote significant advances and developments across a wide range of areas. The journal plays a critical role in building and sustaining AAAS's mission as a global participant and advocate for the communication and use of science to benefit humankind.

Springer Nature
1 New York Plaza, Suite 4600
New York, NY 10004 USA
phone: 1-212-460-1500
customerservice@springernature.com
www.springer.com

STRATEC Consumables GmbH
Sonysstrasse 20
Anif, Salzburg, 5081 AUSTRIA
phone: +43-6246-21250
consumables@stratec.com
www.stratec.com/solutions/consumables

STRATEC Consumables GmbH is a leading OEM supplier of smart polymer-based consumables to the in-vitro diagnostics, life sciences and medical technology industries. The company has an unique combination of skills and technologies including nano- and microstructuring, coating technologies, polymer sciences, and automated assembly. With its certified production facility and a global logistics network, STRATEC Consumables covers the entire value chain, from development via production and quality assurance through to logistics. The company meets all regulatory requirements in the relevant target markets. Its customers include global players in highly regulated markets as well as innovative start-ups.
PicoLitre Benefactor, continued

Vision Research
100 Dey Road
Wayne, NJ 07470 USA
phone: 1-973-696-4500
phantom@ametek.com
www.phantomhighspeed.com

Media Benefactor

Microtech Ventures, Inc.
550 Merrill Street, Suite 240
Birmingham, MI 48009 USA
info@microtechventures.com
microtechventures.com
Microtech Ventures is focused on strategic venture capital, angel investing, and M&A advisory services. Our mission is to accelerate the development of MEMS, sensors, and microtechnologies for the advancement of human civilization and the improvement of quality of life. Our deep industry knowledge and extensive network, combined with practical hands-on strategy experience, enables us to quickly identify the connections that result in multiple opportunities to maximize ownership value, and ensure successful outcomes.

separations
MDPI Academic Open Access Publishing Since 1996
St. Alban-Anlage 66
Basel, 4052 SWITZERLAND
phone: +41-61-683-7734
separations@mdpi.com
www.mdpi.com/journal/separations

Awards

Analytical Chemistry Young Innovator Award
This award, sponsored by the Journal of Analytical Chemistry and Chemical and Biological Microsystems Society (CBMS), recognizes the contributions of an individual who has demonstrated exceptional technical advancement and innovation in the field of micro- or nanofluidics in his or her early career.

Lab on a Chip and Dolomite Pioneers in Miniaturization Prize
An award given for young-to-mid-career scientists, the prize recognizes outstanding contributions to the understanding and development of miniaturized systems. Sponsored by Lab on a Chip, Dolomite, and Chemical and Biological Microsystems Society (CBMS).
Awards, continued

NIST and Lab on a Chip Art in Science Award

To draw attention to the aesthetic value in scientific illustrations while still conveying scientific merit, the MicroTAS Conference features an award titled, “Under the Looking Glass: Art from the World of Small Science” sponsored by NIST and Lab on a Chip. Applications are encouraged from any person attending the MicroTAS Conference and the winner will be selected by a panel of senior scientists in the field of MicroTAS.

Lab on a Chip Widmer Poster Award

The Widmer Poster Award Competition sponsored by the Lab on a Chip is an award given to recognize excellence amongst the annual MicroTAS Conference poster presenters. A review committee will select the overall best-presented poster from the poster session and all presented posters will be reviewed for this honor.

CHEMINAS Young Researcher Poster Awards

The Young Researcher Poster Award Competition sponsored by The Society for Chemistry and Micro-Nano Systems (CHEMINAS) to recognize excellence among its participants. A select group of poster judges will select, on a daily basis, the best presented posters from the poster session.

IMT Masken und Teilungen AG Microfluidics on Glass Poster Award

To be relevant to the spirit and intent of this Microfluidics on Glass Award, the advancement considered must address at least one of the following: • Use glass as a substrate material for a nano/microfluidic device where the unique optical, electrical, or surface properties of glass provide a profound advantage; • Demonstrate novel biosensing capabilities; • Exhibit hybridisation of glass with other materials (composites); • Establish design for manufacturability with materials and processes that have the potential to be scaled up through transfer to industry

MDPI Micromachines & the Chemical Biological Microsystems Society (CBMS) Flash Presentation Award Sponsors

The Flash Presentation Award sponsored by MDPI Micromachines & the Chemical Biological Microsystems Society (CBMS) to recognize excellent poster presenters with flash presentations to advertise their posters in a dynamic and creative manner. Attributes of excellence include being original and highly informative; other attributes including being visually appealing and using humor may be appreciated as well.
Awards, continued

Sensors (MDPI) Outstanding Sensors and Actuators, Detection Technologies Poster Award
The Outstanding Sensors and Actuators, Detection Technologies Poster Award Competition sponsored by Sensors (MDPI), is to recognize excellence among its participants.

Biomicrofluidics - Best Paper Award
The Best Paper Award sponsored by Biomicrofluidics to recognize the three best papers submitted to the MicroTAS Conference.
Workshops - Saturday, October 3

Workshop 1 09:00 - 10:00
Plug and Play: Fluids Delivery and System Integration
Nicolas Verplanck¹, Leanna Levine², Masumi Yamada³, and Edmond Young⁴,
¹Atomic Energy and Alternative Energies Commission - CEA, FRANCE, ²ALine, Inc, USA,
³Chiba University, JAPAN, and ⁴University of Toronto, CANADA

Workshop 4 10:00 - 11:00
Advanced Microscopy Techniques for Cell Imaging in 3D
Petra Paiè¹, Billy Huang², and Vincent Haguet³,
¹Istituto di Fotonica e Nanotecnologie, CNR, ITALY, ²Nebulum Technologies, TAIWAN and
³CEA, Grenoble, FRANCE

Workshop 6 08:00 - 09:00
Surface Functionalization in Microfluidics
Sung Gap Im¹ and Ying-Chih Chang²,³,
¹Korea Advanced Institute of Science and Technology (KAIST), KOREA, ²Academia Sinica, TAIWAN, and
³Stanford University, USA

Workshop 7 08:00 - 09:00
Small-Scale Bioreactors
Krist V. Gernaey¹, Wim De Malsche², Pei-Chen Chiang³, and Katrin Rosenthal⁴,
¹Technical University of Denmark, DENMARK, ²Vrije Universiteit Brussel, BELGIUM,
³Corning Research Center, TAIWAN, and ⁴Technical University Dortmund, GERMANY

Workshop 8 09:00 - 10:00
Bio/3D-Printing
Shrike Zhang¹, Mei He², Oni Basu³, and Hongkai Wu⁴,
¹Harvard Medical School, USA, ²University of Florida, USA, ³University of Chicago, USA, and
⁴Hong Kong University of Science and Technology, HONG KONG

Workshop 9 10:00 - 11:00
Liquid Biopsy - Latest Development in the CTC, Exosome and Free-Floating DNA for Diagnosis
Sunitha Nagrath¹, Valérie Taly², Chi-Hen Chen³, Leon Terstappen³, Fikri Abali³, and Afroditi Nanou⁴,
¹University of Michigan, USA, ²Université de Paris, FRANCE, ³National Tsing Hua University, TAIWAN, and
⁴University of Twente, THE NETHERLANDS

Workshop 12 11:00 - 12:00
Point of Care for Global Health
Fernando Benito Lopez¹, Yuksel Temiz², Jacqueline Linnes³, and Konstantinos Mitsakakis⁴,
¹Universidad del País Vasco, SPAIN, ²IBM, SWITZERLAND, ³Purdue University, USA,
⁴University of Freiburg - IMTEK, GERMANY
Workshops - Sunday, October 4

Workshop 2 08:00 – 09:00
SENSOR INTEGRATION IN MICROFLUIDICS
Federico Paratore¹, Federica Caselli² and Chii-Wann Lin³
¹IBM, SWITZERLAND, ²University of Rome Tor Vergata, ITALY, and ³National Taiwan University, TAIWAN

Workshop 3 09:00 – 10:00
OPEN SPACE MICROFLUIDIC
Jean Berthier¹, Thomas Gervais², and Mohammad Qasaimeh³
¹University of Washington, USA, ²Polytechnique Montréal, Canada, and ³New York University Abu Dhabi, UAE

Workshop 5 11:00 – 12:00
FLOW MODELING AND VISUALIZATION IN MICROFLUIDICS
Henrik Bruus¹, Wei-Hsin Tien², Rune Barnkob¹, and Yuki Minamoto⁴
¹Technical University of Denmark, DENMARK, ²National Taiwan University of Science and Technology, TAIWAN, ³Technical University of Munich, GERMANY, and ⁴Flowsquare+/Tokyo Institute of Technology, JAPAN

Workshop 10 10:30 – 11:30
ORGAN ON CHIP AND MICROFLUIDIC-BASED TISSUE ENGINEERING
Stephanie Descroix¹, Deok-Ho Kim², Rebecca Rose Pompano³, and Anna Herland⁴
¹Institut Curie - CNRS, FRANCE, ²Johns Hopkins University School of Medicine, USA, ³University of Virginia, USA, and ⁴KTH Royal Institute of Technology, SWEDEN

Workshop 11 10:00 – 11:00
DROPLET MICROFLUIDICS
Yegan Erdem¹, Håkan Jönsson², and Charles Baroud³
¹Bilkent University, TURKEY, ²KTH Royal Institute of Technology, SWEDEN, and ³Institut Pasteur, FRANCE
Day 1 - Monday, October 5

Opening Remarks – Welcome Address

08:00 CBMS President
Nicole Pamme, University of Hull, UK

College of Engineering - Georgia Institute of Technology, USA
Steve McLaughlin, Provost and Executive Vice President for Academic Affairs

University of Twente, THE NETHERLANDS
Victor van der Chijs, President Executive Board (CVB)

MicroTAS 2020 Conference Chairs
Séverine Le Gac, University of Twente, THE NETHERLANDS
Hang Lu, Georgia Institute of Technology, USA

Plenary Speaker Presentation I

Session Chairs
Je-Kyun Park, Korea Advanced Institute of Science and Technology (KAIST), KOREA
Manabu Tokeshi, Hokkaido University, JAPAN

08:25 - 09:25
MP-01 ON-CHIP ROBOTICS: EMERGING FUNCTIONS IN MICROFLUIDIC ENVIRONMENT WITH INTEGRATION OF SENSORS & ACTUATORS
Fumihito Arai
University of Tokyo, JAPAN

09:25 - 09:30 Transition Break

Poster Session M1

09:30 - 10:30 Presentations are listed by topic category with their assigned number starting on page 16.

Coffee Break (offline) or join the Daily Quiz Featuring Fluigent

10:30 - 10:45 Join us for a quick quiz hosted by Fluigent. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to www.kahoot.it in your web browser. Further instructions available upon joining. Winner will be selected to participate in “Who Wants to be a Millionthaire?” on Friday.

Panel Discussion I

Moderators:
Audrey Bowden, Vanderbilt University, USA
Wouter van der Wijngaart, KTH Royal Institute of Technology, SWEDEN

10:45 - 11:35 WOMEN IN ACADEMIA
Sabeth Verpoorte1, Karen Cheung2, and Lingling Shui3
1University of Groningen, THE NETHERLANDS, 2University of British Columbia, CANADA, and 3South China Normal University, CHINA
Panel Discussion II

Moderators:
Abraham P. Lee, *University of California, Irvine, USA*
Bastien Venzac, *University of Twente, THE NETHERLANDS*

10:45 - 11:35 ETHICS IN SCIENCE
Claire Ribrault¹, Adam Marcus², Philippa Ross³, and Jun Fudano⁴
¹Ateliers des Jours à Venir, FRANCE, ²Retraction Watch, USA, ³Royal Society of Chemistry, UK, and ⁴Waseda University, JAPAN

Industrial Stage 1

Session Chairs
Sally Peyman, *University of Leeds, UK*
Shoji Takeuchi, *University of Tokyo, JAPAN*

10:45 - 11:10 1a - Zurich Instruments AG
FAST IMPEDANCE SPECTROSCOPY FOR CHARACTERIZATION AND COUNTING

11:10 - 11:35 1b - microfluidic ChipShop GmbH
WHY ISN'T ELON MUSK DOING MICROFLUIDICS?

Industrial Stage 2

Session Chairs
Daniel Citterio, *Keio University, JAPAN*
Mei He, *University of Florida, USA*

10:45 - 11:10 2a – Newormics LLC
VIVOCHIP: HIGH-CONTENT ANALYSIS OF DISEASE MODELS AND TOXICOLOGY STUDIES USING C. ELEGANS

11:10 - 11:35 2b – Biond Solutions B.V.
NOURISHING, STIMULATING AND MONITORING CELLS WITH MICROELECTRONICS

11:35 - 11:40 Transition Break

Poster Session M2

11:40 - 12:40 Presentations are listed by topic category with their assigned number starting on page 16.

12:40 Adjourn for the Day
Day 2 - Tuesday, October 6

Plenary Speaker Presentation II
Session Chairs
Nicole Pamme, University of Hull, UK
Wouter van der Wijngaart, KTH Royal Institute of Technology, SWEDEN

08:00 - 09:00
TP-02 COVID-19: CHANGING DIRECTIONS OF A PERFECT STORM
Herman Goossens
University of Antwerp, BELGIUM

09:00 - 09:05 Transition Break

09:05 - 09:35 Speaker Corner with Herman Goossens

Poster Session T3
09:05 - 10:05 Presentations are listed by topic category with their assigned number starting on page 16.

Coffee Break (offline) or join one of the Daily Quizzes featuring RAN Biotechnologies and Zurich Instruments
10:05 - 10:20 Join us for a quick quiz hosted by RAN Biotechnologies and Zurich Instruments. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to www.kahoot.it in your web browser. Further instructions available upon joining. Winner will be selected to participate in “Who Wants to be a Millionthaire?” on Friday.

Plenary Speaker Presentation III
Session Chairs
Don DeVoe, University of Maryland, College Park, USA
Joel Voldman, Massachusetts Institute of Technology (MIT), USA

10:20 - 11:20
TP-03 CHEMICAL SYNTHESIS ENABLED BY MICROFLUIDICS, AUTOMATION, AND MACHINE LEARNING
Klavs F. Jensen
Massachusetts Institute of Technology, USA

11:20 - 11:25 Transition Break

11:25 - 11:55 Speaker Corner with Klavs F. Jensen

Poster Session T4
11:25 - 12:25 Presentations are listed by topic category with their assigned number starting on page 16.

12:25 - 12:30 Transition Break
Shark Tank

Moderators
Luc Bousse, *Kryptos Biotechnologies, USA*
Michelle Khine, *University of California, Irvine, USA*
Sumita Pennathur, *University of California, Santa Barbara, USA*

12:30 - 13:30

Panel of Judges
Don Arnold, *Veristad, USA*
Holger Becker, *microfluidic ChipShop, GERMANY*
David Cohen, *Marker AG, USA*
Yolanda Fintschenko, *FounderTraction, USA*
JD Harriman, *Foundation Law Group, USA*
Dirk Heckel, *DH Diagnostics LLC, a Danaher Company, USA*
Carl Meinhart, *University of California, Santa Barbara, USA*
Tomoko Minagawa, *Global Brain Corporation, JAPAN*
Josh Molho, *Milo at ProteinSample, USA*
Akhil Saklecha, *Cleveland Clinic Ventures, USA*
Erez Podoly, *MightyGate, USA*

13:30

Adjourn for the Day
Day 3 - Wednesday, October 7

Keynote Presentation I
Session Chairs
Kazuma Mawatari, University of Tokyo, JAPAN
Fan-Gang Tseng, National Tsing Hua University, TAIWAN

08:00 - 08:30
WK-01 LIQUID MARBLE BASED DIGITAL MICROFLUIDICS: FUNDAMENTAL PHYSICS AND APPLICATIONS
Nam-Trung Nguyen, Chin Hong Ooi, Raja Vadivelu, Kamalalayam Rajan Sreejith, Jing Jin, Nhat-Khuong Nguyen, and Pradip Singha
Griffith University, AUSTRALIA

Keynote Presentation II
Session Chairs
Stephanie Descroix, Institut Curie CNRS, FRANCE
Jacqueline Linnes, Purdue University, USA

08:00 - 08:30
WK-02 ENGINEERING AND MEASURING SYSTEMIC MULTI-ORGAN INTERACTIONS FOR TRANSLATIONAL APPLICATIONS
Lor Huai Chong¹, Hsih Yin Tan¹, Louis Ong¹ ², Christopher Tostado², and Yi-Chin Toh¹
"Queensland University of Technology, AUSTRALIA and ²National University of Singapore, SINGAPORE"

Keynote Presentation III
Session Chairs
Ian Papautsky, University of Illinois, Chicago, USA
Hongkai Wu, Hong Kong University of Science and Technology, HONG KONG

08:00 - 08:30
WK-03 INKJET-BASED HIGH THROUGHPUT SINGLE CELL DISPENSING
Karen C. Cheung
University of British Columbia, CANADA

Keynote Presentation IV
Session Chairs
Hugh Fan, University of Florida, USA
Chang-Soo Lee, Chungnam National University, KOREA

08:00 - 08:30
WK-04 MICROFLUIDICS FOR LIQUID BIOPSY
Chao Liu, Fei Tian, and Jiashu Sun
National Center for Nanoscience and Technology, CHINA

08:30 - 08:35 Transition Break

08:35 – 09:05 Speaker Corners
Nam-Trung Nguyen, Yi-Chin Toh, Karen C. Cheung, and Jiashu Sun
Poster Session W5

08:35 - 09:35 Presentations are listed by topic category with their assigned number starting on page 16.

09:35 - 09:40 Transition Break

Panel Discussion III

Moderators:
Yi Chin Toh, *Queensland University of Technology, AUSTRALIA*
Wouter van der Wijngaart, *KTH Royal Institute of Technology, SWEDEN*

09:40 - 10:30 ADVICE FOR EARLY CAREERS IN ACADEMIA
Albert van den Berg¹, Maria Tenje², Joel Voldman³, Jacqueline Linnes⁴, Yoon-Kyoung Cho⁵, and Ya-Yu Chiang⁶

¹*University of Twente, THE NETHERLANDS*, ²*Uppsala University, SWEDEN*, ³*Massachusetts Institute of Technology, USA*, ⁴*Purdue University, USA*, ⁵*Ulsan National Institute of Science and Technology (UNIST), KOREA*, and ⁶*National Chung-Hsing University, TAIWAN*

Panel Discussion IV

Moderators:
Aaron Wheeler, *University of Toronto, CANADA*
Monica Brivio, *Micronit Microtechnologies, THE NETHERLANDS*

09:40 - 10:30 WOMEN IN INDUSTRY
Leanna Levine¹, Alissa Fitzgerald², Claudia Gaertner³, France Hamber⁴, Mika Mizunuma⁵, and Hong Ya Ying⁶

¹*A-Line, USA*, ²*A.M. Fitzgerald & Associates, USA*, ³*microfluidic ChipShop, GERMANY*, ⁴*Fluigent, FRANCE*, ⁵*CRAIF, JAPAN*, and ⁶*Shenzhen Shineway Technology Corp., HONG KONG*

Industrial Stage 3

Session Chairs
Joan Bienvenue, *University of Virginia, USA*
Kevin Nichols, *Global Health Labs, USA*

09:40 - 10:05 **BOOK PUBLISHING @ SPRINGER NATURE**

10:05 - 10:30 **Fluigent/ BEOnChip: A STRATEGIC PARTNERSHIP TO BETTER ADDRESS THE NEEDS OF THE MULTIDISCIPLINARY FIELD OF ORGAN ON CHIP**

Industrial Stage 4

Session Chairs
Cullen Buie, *Massachusetts Institute of Technology, USA*
Rebecca Pompano, *University of Virginia, USA*

09:40 - 10:05 **CHALLENGES AND SOLUTIONS FOR NEW DIAGNOSTIC CONSUMABLE MANUFACTURING**

10:05 - 10:30 **CHALLENGES AND SOLUTIONS FOR NEW DIAGNOSTIC CONSUMABLE MANUFACTURING**
Coffee Break (offline) or join the Daily Quiz featuring Emulseo

Join us for a quick quiz hosted by Emulseo. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to www.kahoot.it in your web browser. Further instructions available upon joining. Winner will be selected to participate in “Who Wants to be a Millionthaire?” on Friday.

Poster Session W6

10:45 - 11:45 Presentations are listed by topic category with their assigned number starting on page 16.

11:45 - 11:50 Transition Break

Plenary Speaker Presentation IV

Session Chairs
Hang Lu, Georgia Institute of Technology, USA
Jonas Tegenfeldt, Lund University, SWEDEN

11:50 - 12:50

WP-04 SKIN-INSPIRED MATERIALS, SENSORS AND APPLICATIONS
Zhenan Bao
Stanford University, USA

12:55 - 13:25 Speaker Corner with Zhenan Bao

13:25 Adjourn for the Day
Day 4 - Thursday, October 8

Plenary Speaker Presentation V
Session Chairs
Yoon-Kyoung Cho, Ulsan National Institute of Science and Technology (UNIST), KOREA
Amy Herr, University of California, Berkeley, USA

08:00 - 09:00
ThP-05 BIOCOMPATIBLE INTERFACES OF NANOSTRUCTURED POLYMER FOR ADVANCED MEDICAL AND HEALTHCARE DEVICES
Madoka Takai
University of Tokyo, JAPAN

09:00 - 09:05 Transition Break

09:05 – 09:35 Speaker Corner with Madoka Takai

Poster Session Th7

09:05 - 10:05 Presentations are listed by topic category with their assigned number starting on page 16.

Coffee Break (offline) or join the Daily Quiz featuring Nanoscribe GmbH

10:05 - 10:20 Join us for a quick quiz hosted by Nanoscribe GmbH. We will use Kahoot! for this quiz, so please install Kahoot! on your smartphone or head over to www.kahoot.it in your web browser. Further instructions available upon joining. Winner will be selected to participate in “Who Wants to be a Millionthaire?” on Friday.

Panel Discussion V
Moderators:
Michinao Hashimoto, Singapore University of Technology and Design, SINGAPORE
Agnieszka Zuchowska, University of Twente, THE NETHERLANDS

10:20 - 11:10 PARENTING IN SCIENCE AND WORK-LIFE BALANCE
Agnes Tixier-Mita1, Yoshio Mita1, Yong Zeng2, Mei He2, Jonas Tegenfeldt3, and Christelle Prinz3
1University of Tokyo, JAPAN, 2University of Florida, USA, and 3Lund University, SWEDEN

Panel Discussion VI
Moderators:
Yi Chin Toh, Queensland University of Technology, AUSTRALIA
Daniel Citterio, Keio University, JAPAN

10:20 - 11:10 STUDENTS AND POSTDOCS STUDYING ABROAD
Petra Dittrich1, Gaspard Pardon2, Dino Di Carlo3, Darius Rackus1, Anderson Shum4, and Christopher Tostado5
1ETH Zürich, Basel, SWITZERLAND, 2Stanford University, USA, 3University of California, Los Angeles, USA, 4Hong Kong University, HONG KONG, and 5Genome Institute of Singapore, SINGAPORE
<table>
<thead>
<tr>
<th>Time</th>
<th>Session Chairs</th>
<th>Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>10:20 - 10:45</td>
<td>Ya-Yu Chiang, National Chung Hsing University, TAIWAN, John Oakey, University of Wyoming, USA</td>
<td>5a – Jobst Technologies GmbH NANO/ MICRO FLOW SYSTEMS, AND BIOSENSORS</td>
</tr>
<tr>
<td>10:45 – 11:10</td>
<td>John Oakey, University of Wyoming, USA</td>
<td>5b – PreciGenome LLC A TOOL BOX FOR MICROFLUIDIC SYSTEM INTEGRATION AND ITS APPLICATIONS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10:20 - 10:45</td>
<td>Axel Guenther, University of Toronto, CANADA, Tiina Sikanen, University of Helsinki, FINLAND</td>
<td>6a – Vision Research, AMETEK HIGH-SPEED IMAGING SOLUTIONS FOR IMAGE CYTOMETRY</td>
</tr>
<tr>
<td>10:45 - 11:10</td>
<td></td>
<td>6b – STRATEC Consumables GmbH COLLABORATION BY DESIGN – HOW TO INTEGRATE PARTNERS IN THE</td>
</tr>
<tr>
<td></td>
<td></td>
<td>DEVELOPMENT AND MANUFACTURING OF NEXT GENERATION DIAGNOSTICS</td>
</tr>
<tr>
<td>11:10 - 11:15</td>
<td></td>
<td>Transition Break</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11:15 - 12:15</td>
<td></td>
<td>Presentations are listed by topic category with their assigned number starting on page 16.</td>
</tr>
<tr>
<td>12:15 - 12:20</td>
<td></td>
<td>Transition Break</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20 - 12:50</td>
<td>Stephen Jacobson, Indiana University, USA, Marcel Utz, University of Southampton, UK</td>
<td>Keynote Presentation V EMERGING WATER TREATMENT TECHNOLOGIES</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Technion - Israel Institute of Technology, ISRAEL</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12:20 - 12:50</td>
<td>Katherine Elvira, University of Victoria, CANADA, Han Wei Hou, Nanyang Technological University,</td>
<td>Keynote Presentation VI NANOSTRUCTURES FOR PROBING AND TRANSFECTING LIVING CELLS</td>
</tr>
<tr>
<td></td>
<td>SINGAPORE</td>
<td></td>
</tr>
<tr>
<td>12:20 - 12:50</td>
<td></td>
<td>Christelle N. Prinz</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lund University, SWEDEN</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Keynote Presentation VII

Session Chairs
- Lourdes Basabe, *University of the Basque Country and IKERBASQUE, SPAIN*
- Charles Henry, *Colorado State University, USA*

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
</tr>
</thead>
</table>
| 12:20 - 12:50 | EXPANDING THE (i)SIMPLE MICROFLUIDIC TOOLBOX TOWARDS ADVANCED DIAGNOSTICS AND THERAPEUTICS

Dries Vloemans, Lorenz Van Hileghem, Henry Ordutowski, Dragana Spasic, Francesco Dal Dosso, and Jeroen Lammertyn

KU Leuven, BELGIUM |

Keynote Presentation VIII

Session Chairs
- Govind Kaigala, *IBM Research, Zurich, SWITZERLAND*
- Darwin Reyes, *National Institute of Standards and Technology (NIST), USA*

<table>
<thead>
<tr>
<th>Time</th>
<th>Presentation</th>
</tr>
</thead>
</table>
| 12:20 - 12:50 | SQUEEZING DNA IN NANOCHANNELS

Kevin D. Dorfman

University of Minnesota, USA |

12:50 - 12:55 Transition Break

12:55 – 13:25 **Speaker Corners**
- Matthew E. Suss, Christelle N. Prinz, Jeroen Lammertyn, and Kevin D. Dorfman

13:25 **Adjourn for the Day**
Day 5 - Friday, October 9

Plenary Speaker Presentation VI
Session Chairs
Petra Dittrich, ETH Zürich, Basel, SWITZERLAND
Séverine Le Gac, University of Twente, THE NETHERLANDS

08:00 - 09:00
FP-06 WATER-REPELLENT MATERIALS: A FEW TRICKS WE LEARNT FROM NATURE, AND BEYOND
David Quéré
ESPCI-Paris, PSL Research University, FRANCE

09:00 - 09:05 Transition

09:05 - 09:35 Speaker Corner with David Quéré

Analytical Chemistry
Young Innovator Award and Presentation

09:05 - 09:25 BUILDING SYNTHETIC HUMAN EMBRYO-LIKE STRUCTURES
Jianping Fu
University of Michigan, Ann Arbor, USA

Lab on a Chip and Dolomite
Pioneers of Miniaturization Lectureship Award and Presentation

09:25 - 09:45 CLINICAL TRANSLATION OF MICROFLUIDIC SYSTEMS AND LESSONS LEARNED FROM THE COVID-19 PANDEMIC
Wilbur A. Lam1,2
1Emory University, USA and 2Georgia Technical University, USA

09:45 - 09:50 Transition

Who Wants to be a Millionthaire?
Moderator
Darius Rackus, ETH Zürich, Basel, SWITZERLAND

Join us for “Who Wants to be a Millionthaire?”, the very first MicroTAS gameshow! Twelve contestants will compete in rounds of trivia, games of skill, and silly activities all for a chance to win one free registration to MicroTAS 2021 in Palm Springs. Contestants will be selected through participation in the daily quizzes. Two lucky attendees will also have the chance to enter. There will be lots of audience participation, so join in for a little bit of fun at the end of this week!

10:50 - 11:05 Coffee Break (offline)
Award Ceremony
Session Chairs
Stephanie Descroix, Institut Curie CNRS, FRANCE
Thomas Gervais, Polytechnique Montréal, CANADA
Je-Kyun Park, Korea Advanced Institute of Science and Technology (KAIST), KOREA

11:05 – 12:15 CHEMINAS - Young Researcher Poster Awards
Lab on a Chip - Widmer Poster Award
IMT Masken und Teilungen AG - Microfluidics on Glass Poster Award
Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award
National Institute of Standards and Technology (NIST) and Lab on a Chip - Art in Science Award
Microfluidics (MDPI) and CBMS - Flash Poster Presentation Awards
Biomicrofluidics (AIP) - Best Paper Awards

Closing Remarks

12:15 MicroTAS 2020 Conference Chairs
Séverine Le Gac, University of Twente, THE NETHERLANDS
Hang Lu, Georgia Institute of Technology, USA

12:35 Conference Adjourns
POSTER PRESENTATIONS

M1	Monday, October 5	09:30 - 10:30
T3	Tuesday, October 6	09:05 - 10:05
W5	Wednesday, October 7	08:35 - 09:35
Th7	Thursday, October 8	09:05 - 10:05
M2	Monday, October 5	11:40 - 12:40
T4	Tuesday, October 6	11:25 - 12:25
W6	Wednesday, October 7	10:45 - 11:45
Th8	Thursday, October 8	11:15 - 12:15

Classification Chart
(last character of poster number)

a	Fundamentals in Microfluidics and Nanofluidics
b	Micro- and Nanoengineering
c	Sensors and Detection Technologies
d	Integrated Microfluidic Platforms
e	Cells, Organisms and Organs on a Chip
f	Diagnostics, Drug Testing & Personalized Medicine
g	Other Applications of Microfluidics

a - Fundamentals in Microfluidics and Nanofluidics

Electrokinetic Phenomena

M2-201.a AN ELECTROKINETIC-BASED LARGE VOLUME CONCENTRATOR FOR ULTRA-LOW ABUNDANT TARGET DETECTION

Hyukjin J. Kwon, Bryan Lenneman, Timothy Lu, Kyungyong Choi, and Jongyoon Han
Massachusetts Institute of Technology, USA

T3-301.a CHARACTERIZING SINGLE SINONASAL SQUAMOUS CELL CARCINOMA USING DI-ELECTROPHORESIS AND ELECTROROTATION

Thao N.P. Mai\(^1\), Sakina Bensalem\(^1\), Bénédicte Thiebot\(^2\), Philippe Manivet\(^1\), Juan Pelta\(^2\), and Bruno Le Pioufle\(^1\)
\(^1\)Ecole Normale Superieure de Paris-Saclay, FRANCE, \(^2\)Université Paris-Saclay, Université Evry, FRANCE, and \(^3\)University of Paris 10, FRANCE

T4-401.a CONTROLLING AC-ELECTROOSMOTIC VORTEX FLOWS BY SHAPING THE CHANNEL CROSS SECTION

Christina Tiflidis\(^{1,2}\), Eiko Westerbeek\(^{1,2}\), Koen F.A. Jorissen\(^2\), Wouter Olthuis\(^2\), Jan Eijkel\(^2\), and Wim De Malsche\(^1\)
\(^1\)Vrije Universiteit Brussel, BELGIUM and \(^2\)University of Twente, THE NETHERLANDS

W5-501.a DIELECTROPHORETIC EQUILIBRIUM OF COMPLEX PARTICLES

Tom Elkeles\(^1\), Pablo Garcia-Sanchez\(^2\), Wu Yue\(^1\), Antonio Ramos\(^2\), and Gilad Yossifon\(^1\)
\(^1\)Technion – Israel Institute of Technology, ISRAEL and \(^2\)Universidad de Sevilla, SPAIN

W6-601.a ELECTROKINETIC WALL EFFECT MECHANISMS AND APPLICATIONS

Jason P. Beech, Bao Dang Ho, Oskar Ström, and Jonas O. Tegenfeldt
Lund University, SWEDEN
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th7-701.a</td>
<td>N-DEP ENHANCED LATERAL DISPLACEMENT IN DLD DEVICE TO FOR HIGH EFFICIENT CELL SORTING</td>
<td>Chia-Hsin Chang¹ and Fan-Gang Tseng¹ ²</td>
<td>National Tsing Hua University, TAIWAN and Academia Sinica, TAIWAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>a - Fundamentals in Microfluidics and Nanofluidics</td>
<td>Droplet Microfluidics</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-102.a</td>
<td>A NOVEL PARTITIONING PLATFORM TOWARDS THE LOW-COST, RAPIDLY DEPLOYABLE, DIGITAL DETECTION OF SARS-COV-2</td>
<td>Maria Alvarez Amador, Yuhe Jiang, Ling Li, and Eric Brouzes</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-103.a</td>
<td>DEFORMABILITY-BASED MICROFLUIDIC MICRODROPLET SORTING AS A SCREENING METHOD FOR SINGLE AGAROLYTIC BACTERIAL CELLS</td>
<td>Mikihisa Muta¹, Kai Saito¹, Ryo Iizuka¹, Wataru Kawakubo², Dong Hyun Yoon², Mei Ito³, Yuji Hatada³, Tetsushi Sekiguchi², Shuichi Shoji², and Takashi Funatsu¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-104.a</td>
<td>ENDOTHELIAL-CELL SPROUTING ASSAY WITH MULTIPLE INTERACTING SEEDS AS A PLATFORM TO STUDY ANGIogenesis</td>
<td>Katarzyna Rojek and Jan Guzowski</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-105.a</td>
<td>IMAGE ANALYSIS EXPLORATION: CASE FOR DROPLET MICROFLUIDICS</td>
<td>Immanuel Sanka, Simona Bartkova, Pille Pata, Olli-Pekka Smolander, and Ott Scheler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-106.a</td>
<td>PARALLEL DROPLET GENERATION OF LINEAR CONCENTRATION GRADIENT FOR ANTIMICROBIAL SUSCEPTIBILITY TESTING OF ESCHERICHIA COLI O157:H7</td>
<td>Jae Seong Kim¹, Byungjin Lee¹, Heon-Ho Jeong², Dong-Ho Kim¹, Kyoung Han Kim¹, and Chang-Soo Lee¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-107.a</td>
<td>TOWARDS HIGH-THROUGHPUT SCREENING FOR DRUG DISCOVERY IN MULTI SPLITTING AND MERGING SYSTEM USING MICROVALVES</td>
<td>Sagar N. Agnihotri¹, Mohammad Reza Raveshi¹, Rajneesh Bhardwaj², and Adrian Neild¹</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2-202.a</td>
<td>A SAMPLE INJECTION INTERFACE OF MASS SPECTROMETRY UTILIZING FEMTOLITER-DROPLET SHOOTER BY MICROFLUIDICS</td>
<td>Yuto Takagi¹, Yutaka Kazoe², and Takehiko Kitamori¹ ³</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2-203.a</td>
<td>DROPLET GENERATOR IN A SINGLE TUBE FOR DNA AMPLIFICATION</td>
<td>Shaw-Hwa Parng, Ping-Jung Wu, Yu-Yin Tsai, Ruey-Shyan Hong, and Su-Jan Lee</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2-204.a</td>
<td>FACILE EVAPORATION INDUCED ON SURFACE MANIPULATION OF AQUEOUS DROPLETS AND ITS APPLICATION IN BIOLOGICAL CARGO TRANSPORT</td>
<td>Butunath Majhy and Ashis K. Sen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2-205.a</td>
<td>MANIPULATION OF DROPLETS IN NON-NEWTONIAN FLUID</td>
<td>Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹</td>
</tr>
</tbody>
</table>
M2-206.a PERIODIC CONCENTRATION-POLARIZATION BASED FORMATION OF BIOMOLECULE PRECONCENTRATION
Sinwook Park, Ramadan Abu-Rjal, Keren Buchnik, Yechezkel Kashi, and Gilad Yossifon
Technion – Israel Institute of Technology, ISRAEL

T3-302.a ACTIVE GENERATION OF FEMTOLITER DROPLET IN MICROFLUIDICS USING INKJET NOZZLE
Dege Li¹, Yi Cao¹, Bingfang Huang¹, Chao Zheng¹, Yonghong Liu¹, and Yanzhen Zhang¹,²
¹China University of Petroleum (East China), CHINA and ²Swinburne University of Technology, AUSTRALIA

T3-303.a DROPLET GENERATORS COMMUNICATION FOR A HIGH THROUGHPUT PRODUCTION
Ilyesse Bihi, Pierre Gelin, and Wim De Malsche
Vrije Universiteit Brussel, BELGIUM

T3-304.a FAST DROPLET ENRICHMENT USING SPONTANEOUS EMULSIFICATION
Piangrawee Santivongskul¹, Mao Fukuyama¹,², and Akihide Hibara¹
¹Tohoku University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

T3-305.a MICRO-MAGNETIC-TWEEZERS: A TOOL FOR BIOSEPARATION IN SUB-NANOLITER DROPLETS
Simon Dumas, Mathilde Richerd, Marco Serra, and Stéphanie Descroix
Institut Curie, FRANCE

T3-306.a PRODUCTION OF MONODISPERSE CAPSULES FOR CONTROLLED SPORE RELEASE
Iwona Ziemecka¹, Ilyesse Bihi¹, Pierre Gelin¹, Guy Van Assche², Suzy Vaupre¹, Roberto Teixeira¹, Dominique Maes¹, and Wim De Malsche¹
¹Vrije Universiteit Brussel, BELGIUM and ²Devan Chemicals NV, BELGIUM

T4-402.a AUTOMATED MICROFLUIDIC DROPLET GENERATION AND MERGING TO RESOLVE DYNAMICS OF UPTAKE AND SECRETION IN WHITE ADIPOSE TISSUE (WAT)
Nan Shi, Md Moniruzzaman, Yvette Kayirangwa, and Christopher J. Easley
Auburn University, USA

T4-403.a DROPLET MICROFLUIDIC BASED METHOD FOR IN-SITU CALIBRATION AND DETERMINATION OF RECOVERY RATE OF MICRODIALYSIS
Gareth W.H. Evans¹, Jameelah Salahuddin¹, Wahida T. Bhuiyan¹, Brett Warren², and Xize Niu¹,²
¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

T4-404.a GENERATION OF AQUEOUS-DROPLET-FILLED HYDROGEL FIBERS AS ORGANOID CARRIES USING ALL-IN-WATER MICROFLUIDIC SYSTEM
Hui Wang, Hai-Tao Liu, Ya-Qing Wang, Meng-Qian Zhao, Wen-Wen Chen, and Jian-Hua Qin
Chinese Academy of Sciences, CHINA

T4-405.a MICROFLUIDIC GENERATION OF WATER-IN-WATER-IN-WATER(IN-WATER) DOUBLE AND TRIPLE EMULSIONS
Morteza Jeyhani¹,², Risavarshni Thevakumaran¹,², Niki Abbasi¹,², Dae Kun Hwang¹,², and Scott S. H. Tsai¹,²
¹Ryerson University, CANADA and ²St. Michael’s Hospital, CANADA

T4-406.a REAL-TIME IMAGE-BASED DROPLET MEASUREMENT
Sepehr Elahi¹, Ali Kalantarifard¹, Fatemeh Kalantarifard¹, and Caglar Elbukten¹,³
¹Bilkent University, TURKEY, ²Bogazici University, TURKEY, and ³University of Oulu, FINLAND

W5-502.a BINARY CONSTRUCTIONS, TIP ELONGATION AND DUTY CYCLE: SHAPE BASED MECHANISMS FOR LABEL-FREE DETECTION IN DROPLETS
Afreen Fatima and Amar S. Basu
Wayne State University, USA
W5-503.a DROPLET MICROFLUIDIC PLATFORM FOR INTRACELLULAR PHASE SEPARATION EXPERIMENTS
Katherine Chan1,2, Maryam Navi1,2, Jennifer Kieda1,2, and Scott S.H. Tsai1,2
1Ryerson University, CANADA and 2St. Michael’s Hospital, CANADA

W5-504.a GENERATION OF COMPLEX EMULSIONS USING MONOLITHIC, DUAL- MATERIAL 3D-PRINTED MICROFLUIDIC DEVICES
Jin Li, Pantelitsa Dimitriou, Oliver Castell, and David Barrow
Cardiff University, UK

W5-505.a MOLECULAR REORIENTATION OF CHOLESTERIC DROPLET INDUCED BY STRAIN FOR FLEXIBLE SENSING APPLICATION
Shuting Xie, Mingliang Jin, Ruizhi Yang, Guofu Zhou, and Lingling Shui
South China Normal University, CHINA

W5-506.a SELF-EMULSIFICATION IN LIQUID CRYSTAL DROPLETS
Ruizhi Yang, Yueming Deng, Shuting Xie, Qi An, and Lingling Shui
South China Normal University, CHINA

W6-602.a COMPUTER VISION APPLIED TO MEMBRANE DISPLACEMENT TRAP ARRAYS FOR AUTOMATED DROPLET CONTROL AND MANIPULATION
Michael Yeh1,2, Jason Harriot1, Supriya Padmanabhan1, and Don L. DeVoe1
1University of Maryland, College Park, USA and 2National Cancer Institute, USA

W6-603.a DROPLET SQUEEZING FOR HIGHLY EFFECTIVE GENE DELIVERY INTO HUMAN T LYMPHOCYTES
Byeongju Joo, Hasung Lee, Seung Gyu Yun, and Aram Chung
Korea University, KOREA

W6-604.a GENERATION OF SPHEROIDS USING AN AQUEOUS TWO-PHASE SYSTEM DROPLET MICROFLUIDIC PLATFORM
Jennifer Kieda1,2, Morteza Jeyhani1,2, Maryam Navi1,2, Katherine Chan1,2, and Scott S.H. Tsai1,2
1Ryerson University, CANADA and 2St. Michael’s Hospital, CANADA

W6-605.a MONITORING OF AMMONIA IN NATURAL WATERS USING A VERSATILE, PROGRAMMABLE DROPLET MICROFLUIDIC PLATFORM
Wahida Bhuiyan1, Evanthia Papadopoulou2, Sharon Coleman2, Matthew Pearson2, Adrian Nightingale1, Gareth Evans1, and Xize Niu1,2
1University of Southampton, UK and 2SouthWestSensor Ltd., UK

W6-606.a SIMULTANEOUS DROPLET FORMATION VIA GRAVITY-INDUCED FLOW WITH IN-SERIES DROPLET GENERATING JUNCTIONS
Khashayar R. Baigiran, Riad Elkhanoufi, James A. Dorman, and Adam T. Melvin
Louisiana State University, USA

Th7-702.a CONTINUOUS GENERATION OF CELL-LADEN MICROGELS THROUGH DETERMINISTIC LATERAL DISPLACEMENT ARRAYS
Naotomo Tottori and Takasi Nisisako
1Kyushu University, JAPAN and 2Tokyo Institute of Technology, JAPAN

Th7-703.a DROPLET-ASSISTED PHASE SEPARATION BY INTEGRATED SILICON ELECTROSpray NANO-EMITTER FOR NEUROCHEMICAL SENSING
Yan Zhang, Weihua Shi, Insu Park, Sungho Kim, Christopher Brenden, Hrishikesh Iyer, Prasoon Jha, Rashid Bashir, and Yuri Vlasov
University of Illinois, Urbana-Champaign, USA
Th7-704.a HIGH-THROUGHPUT SORTING OF NANOLITER DROPLETS USING AN ELECTRODE ARRAY WITH A SLANTED MICROCHANNEL
Mun Hong Loo¹, Yuta Nakagawa¹, Akihiro Isozaki¹,², and Keisuke Goda¹,³,⁴
¹University of Tokyo, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN, ³University of California, Los Angeles, USA, and ⁴Wuhan University, China

Th7-705.a MONITORING OF REACTION KINETICS THROUGH THE SYNCHRONIZED RELEASE OF LIPOSOMAL CARGO IN DOUBLE EMULSIONS
Ariane Stucki, Petra Jusková, Nicola Nuti, and Petra S. Dittrich
ETH Zürich, Basel, SWITZERLAND

Th7-706.a SPACE-FILLING OPEN MICROFLUIDICS FOR DROPLET COLLECTION: GENERALIZED DESIGN OF FRACTAL HYPERBRANCHED CHANNELS
Hiroyuki Kai
Tohoku University, JAPAN

Th8-801.a A MICROFLUIDIC MAGNETIC EXTRACTOR FOR MAGNETIC BEAD SEPARATION IN DROPLETS
Junyue Chen¹,², Weiliang Shu¹, Ying Tan², Hongtao Feng¹, Yimo Yan², and Yan Chen¹
¹Chinese Academy of Sciences, CHINA and ²Tsinghua University, CHINA

Th8-802.a CONTROLLED ACTUATION OF SELF-PROPELLED DROPLETS
Loïc Coudron, Clément Lemenu, Kevin Lemaine, Daniel McCluskey, Christabel Tan, Ian Munro, Arne Erik Holdo, Mark Tracey, and Ian Johnston
University of Hertfordshire, UK

Th8-803.a ELECTROCOALESCENCE OF MICRODROPLETS WITH ACTIVE PAIRING
Kaijian Zhu¹,², Wen Yue¹, and Dahai Ren²
¹China University of Geosciences, CHINA and ²Tsinghua University, CHINA

Th8-804.a HYBRID MICROGELS PRODUCED VIA DROPLET MICROFLUIDICS FOR NANOPARTICLE ENCAPSULATION AND DRUG DELIVERY
Bruna G. Carvalho¹, Thiago B. Taketa¹, Bianca B.M. Garcia², Sang W. Han², and Lucimara G. de la Torre¹
¹University of Campinas, BRAZIL and ²São Paulo Federal University, BRAZIL

Th8-805.a OPTICAL ACCESSIBILITY IMPROVEMENTS FOR THE CHARACTERIZATION OF THE NANOPEDE
Edo A.G. de Kruijf¹, Chris L. Kennedy², Corentin B.M. Tregouët³, Alfons van Blaaderen², Jan C.T. Eijkel¹, and Mathieu Odijk¹
¹University of Twente, THE NETHERLANDS, ²Utrecht University, THE NETHERLANDS, and ³University of Rennes, FRANCE

Th8-806.a SPRING-POWERED PORTABLE SYRINGE PUMP THAT PROVIDES CONSTANT FLOW RATE
Won Han and Joong Ho Shin
Pukyong National University, KOREA
<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M2-207.a</td>
<td>ALL-IN-ONE DIGITAL MICROFLUIDIC SYSTEM FOR MOLECULAR DIAGNOSIS BASED ON THE LOOP-MEDIATED ISOTHERMAL AMPLIFICATION</td>
<td>Siyi Hu1, Chao Yang2, Yuhan Jie2, Haifei Yang2, Yang Su1,2, and Hanbin Ma1,2</td>
<td>1Chinese Academy of Sciences, CHINA and 2ACXEL TECH LTD, UK</td>
</tr>
<tr>
<td>T3-307.a</td>
<td>OPEN SURFACE DROPLET MANIPULATION AND MIXING BY FERROFLUID INSTABILITIES</td>
<td>Vahid Nasirimarekani1, Fernando Benito-Lopez1, and Lourdes Basabe-Desmonts1,2</td>
<td>1University of the Basque Country, SPAIN and 2Basque Foundation of Science, IKERBASQUE, SPAIN</td>
</tr>
<tr>
<td>M1-108.a</td>
<td>RELIABLE LIQUID REAGENT HANDLING AND ROTATIONAL RELEASE FOR CENTRIFUGAL SAMPLE-TO-ANSWER AUTOMATION</td>
<td>Yao Lu, Darren McAuley, Rohit Mishra, David Boyle, and Jens Ducrée</td>
<td>Dublin City University, IRELAND</td>
</tr>
<tr>
<td>M2-208.a</td>
<td>VISCOSITY INDEPENDENT FLOW FOR PLANAR CHROMATOGRAPHIC IMMUNOASSAYS BY CENTRIFUGAL MICROFLUIDICS</td>
<td>Daniel M. Kainz1,2, Susanna M. Früh1,2, Tobias Hutzenlaub1,2, Roland Zengerle1,2, and Nils Paust1,2</td>
<td>1University of Freiburg, GERMANY and 2Hahn-Schickard, GERMANY</td>
</tr>
<tr>
<td>T4-407.a</td>
<td>AUTOMATED CELL CULTURE AND ACTIVATION ASSAY USING CENTRIFUGAL MICROFLUIDIC PLATFORM</td>
<td>Lidija Malic1, Liviu Clime1, Jamal Daoud1, Abdelrahman Elmanzalawy1, Ljubojek Lukic1, Huailo Lee2, Yuh-Tyng Tsai2, Pei-Shin Jiang2, and Teodor Veres1</td>
<td>1National Research Council, CANADA and 2Industrial Technology Research Institute, TAIWAN</td>
</tr>
<tr>
<td>W5-507.a</td>
<td>AUTOMATED LIBRARY PREPARATION FOR NEXT GENERATION SEQUENCING OF IMMUNOGLOBULIN GENE REARRANGEMENTS BY CENTRIFUGAL MICROFLUIDICS</td>
<td>Jacob F. Hess1, Michaela Kotrović2, Silvia Calabrese1, Tobias Hutzenlaub1,3, Roland Zengerle1,3, Monika Brüggemann$, and Nils Paust1,3</td>
<td>1Hahn-Schickard, GERMANY, 2University Medical Center Schleswig Holstein, GERMANY, and 3University of Freiburg, GERMANY</td>
</tr>
<tr>
<td>W6-607.a</td>
<td>FULLY INTEGRATED LTA ASSAY ON CENTRIFUGAL MICROFLUIDIC DEVICE</td>
<td>Jungmin Kim1,2, Chi-Ju Kim1, Jonathan Sabaté del Río1, and Yoon-Kyoung Cho1,2</td>
<td>1Ulsan National Institute of Science & Technology (UNIST), KOREA and 2Institute for Basic Science (IBS) < KOREA</td>
</tr>
<tr>
<td>Th7-707.a</td>
<td>PNEUMATICALLY CONTROLLED DROPLET GENERATION ON A CENTRIFUGAL MICROFLUIDIC PLATFORM</td>
<td>Liviu Clime, Lidija Malic, Luke Lukic, Matthias Geissler, and Teodor Veres</td>
<td>National Research Council, CANADA</td>
</tr>
<tr>
<td>Th8-807.a</td>
<td>PURIFICATION OF DNA FRAGMENTS USING PNEUMATIC CONTROL COUPLED TO CENTRIFUGAL MICROFLUIDICS</td>
<td>Daniel Brassard, Jimin Guo, Maxence Mounier, Jason Ferreira, Mojra Janta-Polczynski, and Teodor Veres</td>
<td>National Research Council, CANADA</td>
</tr>
</tbody>
</table>
a - Fundamentals in Microfluidics and Nanofluidics

Acousto- and Magnetofluidics

M1-109.a RAPID MUTINODAL ACOUSTIC TRAPPING OF EXTRACELLULAR VESICLES FOR DOWNSTREAM MASS SPECTROMETRY ANALYSIS
Axel Broman, Lotta Happonen, Frida Palm, Oonagh Shannon, Johan Malmström, and Thomas Laurell
Lund University, SWEDEN

M2-209.a REDUCING TAYLOR DISPERSION WITH ACOUSTIC STREAMING
Pierre Gelin, Dominique Maes, and Wim De Malsche
Vrije Universiteit Brussel, BELGIUM

T3-308.a A SINGLE CELL MANIPULATION TOOL BASED ON GIGAHERTZ ACOUSTIC-STREAMING TWEEZERS
Ke Jin, Yang Yang, Yang Bai, Wei Wei, and Xuexin Duan
State Key Laboratory of Precision Measuring Technology & Instruments, CHINA

W5-508.a BINARY PARTICLE ACOUSTOPHORESIS SEPARATION BASED ON NODAL POSITION ADJUSTMENT THROUGH PDMS WALL
Sinan Yigit\(^1\), Song-I Han\(^2\), Younghak Cho\(^3\), and Arum Han\(^2\)
\(^1\)Necmettin Erbakan University, TURKEY, \(^2\)Texas A&M University, USA, and \(^3\)Seoul National University of Science & Technology, KOREA

W6-608.a FREQUENCY TUNABLE LABEL-FREE SURFACE ACOUSTIC WAVE-BASED FLOW SENSOR
Aurore Quelennec, Jason J. Gorman, and Darwin R. Reyes
National Institute of Standards and Technology (NIST), USA

Th7-708.a MOTILITY-BASED SPERM SELECTION USING ACOUSTOFLUIDICS
Junyang Gai, Reza Nosrati, and Adrian Neild
Monash University, AUSTRALIA

Th8-808.a QUANTIFYING THE ACOUSTIC FIELD IN A MICROCHANNEL USING MICROSWIMMERS AS MEASUREMENT PROBES
Minji Kim\(^1\), Rune Barnkob\(^2\), and J. Mark Meacham\(^1\)
\(^1\)Washington University, St. Louis, USA and \(^2\)Technical University of Munich, GERMANY

a - Fundamentals in Microfluidics and Nanofluidics

Capillary Microfluidics

M1-110.a MULTILEVEL PASSIVE MICROFLUIDICS FOR ELECTROCHEMICAL BIOSENSORS
Pooya Azizian\(^1,2\), Adrián Ortega\(^1\), Jordi Ricart\(^1\), Jasmina Casals-Terré\(^2\), and Joan M. Cabot\(^1\)
\(^1\)Leitat Technological Center, SPAIN and \(^2\)Technical University of Catalonia, SPAIN

M2-210.a MULTISCALE MODELLING AND COMPUTATIONAL DESIGN OF FLUID FLOW AND MASS TRANSPORT IN 3D PRINTED LAB-ON-CHIPS
Agnese Piovesan, Bart Dequeker, Ruben Dochy, Cesar Parra Cabrera, Clement Achille, Rob Ameloot, Pieter Verboven, and Bart Nicolai
KU Leuven, BELGIUM

T3-309.a 3D PRINTED AXISYMMETRIC FLOW-FOCUSING DEVICE USING FUSED SILICA CAPILLARY TUBES
Keisuke Sugahara and Shoji Takeuchi
University of Tokyo, JAPAN

T3-310.a OPEN-CHANNEL CAPILLARY TREES AND CAPILLARY PUMPING
Jing J. Lee, Jean Berthier, Kathleen E. Kearney, Erwin Berthier, and Ashleigh B. Theberge
University of Washington, USA
T4-409.a 3D-PRINTING AND COMPUTATIONAL FLUID DYNAMICS 'MEET' PAPER-BASED MICROFLUIDICS FOR ENHANCED FLOW CONTROL IN DIFFUSIVE SENSORS
Joan Antoni López, Pau Fernández, Pouya Mehdrel, and Jasmina Casals-Terré
Technical University of Catalonia, SPAIN

T4-410.a POLY(N-ISOPROPYL ACRYLAMIDE) COATING OF MICROCHANNELS AND BACTERIAL SAMPLE LOADING VIA CAPILLARY-DRIVEN FLOW
Sammer-ul Hassan¹, Steve Carter², Sehaj Singh², Edward Dyson², Stephen Rimmer², and Xunli Zhang¹
University of Southampton, UK and ²University of Bradford, UK

W5-509.a CAPILLARY-DRIVEN LOADING OF HriCFP EXPRESSING ESCHERICHIA COLI INTO MICROCHANNELS
Ahmed Donia¹, Salma Saeed¹, Aamira Tariq¹, Zobia Noreen¹, Habib Bokhari¹, Xunli Zhang², and Sammer-ul Hassan²
¹Comsats University Islamabad, PAKISTAN and ²University of Southampton, UK

W5-510.a PASSIVE FLOW CONTROL IN A LAMINATION-BASED CAPILLARY-DRIVEN MICROFLUIDIC DEVICE
Ilhoon Jang¹,² and Charles S. Henry²
¹Hanyang University, KOREA and ²Colorado State University, USA

W6-609.a DIGITAL MANUFACTURING OF FUNCTIONAL AUTONOMOUS CAPILLARIC CIRCUITS USING HYDROPHILIC RESINS AND A 3D PRINTER
Ahmad Sohrabi Kashani, Vahid Karamzadeh, Oriol Ymbern Llorens, Andy Ng, and David Juncker
McGill Univeristy, CANADA

W6-610.a SIGNAL AMPLIFICATION IN A LATERAL FLOW ASSAY ENABLED BY A CAPILLARY VALVE AND SELF-ACTUATING ELEVATOR VALVE
Caitlin E. Anderson, Joshua D. Bishop, Andrew K. Miller, Benjamin D. Grant, Toan Huynh, David M. Cate, Bernhard H. Weigl, and Kevin P. Nichols
Intellectual Ventures Laboratory, USA

Th7-709.a INCORPORATING FLOW CONTROL FUNCTIONALITY IN MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES USING PLASMA PROCESSES
Nikhil Raj, Victor Breedveld, and Dennis W. Hess
Georgia Institute of Technology, USA

Th7-710.a THREAD AS A PRECISE SAMPLING AND DELIVERY PLATFORM FOR IMPLANTABLE OR INGESTIBLE APPLICATIONS
H. Rezaei Nejad, Aydin Sadeqi, and Sameer Sonkusale
Tufts University, USA

Th8-809.a LIQUID ATOMIZATION IN PERIODIC ELECTRO-PULSATING MODE. INDIRECT MEASUREMENT OF THE ELECTRIC FIELD ON THE OSCILLATING MENISCUS
Antonio J. Hijano¹, Ignacio G. Loscertales¹, and Francisco J. Higuera²
¹Universidad de Málaga, SPAIN and ²Universidad Politecnica de Madrid, SPAIN
a - Fundamentals in Microfluidics and Nanofluidics

Nanofluidics/Nanofluidic Phenomena

M1-111.a GENERATION OF NANOMETER-SCALE GEOMETRICAL GAS-LIQUID INTERFACES IN HYDROPHILIC/HYDROPHOBIC PATTERNED NANOCHANNELS
Hiroto Kawagishi¹, Shuichi Kawamata¹, and Yan Xu¹,²
¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN

M2-211.a INTEGRATED IONIC ELECTRONICS BASED ON HORIZONTALLY-ALIGNED CARBON NANOTUBES
Ran Peng¹, Yueyue Pan¹, Zhi Li², Shuailong Zhang¹, Aaron R. Wheeler¹, Shirley Tang², and Xinyu Liu¹
¹University of Toronto, CANADA and ²University of Waterloo, CANADA

T3-311.a INTEGRATED MICRO- AND NANOFLUIDIC DEVICES FOR REAL-TIME MONITORING OF HEPATITIS B VIRUS CAPSID ASSEMBLY
Michael P. Kappler, Panagiotis Kondylis, Caleb Starr, Adam Zlotnick, and Stephen C. Jacobson
Indiana University, USA

T4-411.a LATERAL MIGRATION OF DOUBLETS IN UNTREATED WHOLE BLOOD
Jian Zhou and Ian Papautsky
University of Illinois, Chicago, USA

W5-511.a NANOFLUIDIC DEVICE FOR SURFACE CHARGE MEASUREMENT OF NANOPARTICLES USING TUNABLE ELECTROSTATIC LANDSCAPE
Imman I. Hosseini, Zezhou Liu, Walter Reisner, and Sara Mahshid
McGill University, CANADA

W6-611.a TRANSPORT OF VISCOS FLUID THROUGH MICRO- AND NANO-POROUS MEDIA
Md Minhajul Islam and D. Jed Harrison
University of Alberta, CANADA

Th8-810.a A SENSE-REACT-SENSE NANOFLUIDIC SYSTEM FOR PERFORMING REACTIONS ON SINGLE VIRUS CAPSIDS
Mi Zhang, Caleb Starr, Zhongchao Zhao, Adam Zlotnick, and Stephen C. Jacobson
Indiana University, USA

a - Fundamentals in Microfluidics and Nanofluidics

Modeling/Numerical Simulation

M1-112.a COMPUTATIONAL FLUID DYNAMIC SIMULATION FOR THE STENOSIS MICROFLUIDIC THROMBOSIS MODEL CHARACTERIZATION
Yunduo Charles Zhao¹, Parham Vatankhah¹, Tiffany Goh¹,², and Lining Arnold Ju¹,²
¹University of Sydney, AUSTRALIA and ²Heart Research Institute, AUSTRALIA

M1-113.a SHAPE DEPENDENT MODEL-BASED APPROACH FOR ELASTIC MODULI ESTIMATION OF BIOLOGICAL CELLS IN FLOW
Gangadhar Eluru, Ramya Shekhar, and Sai Siva Gorthi
Indian Institute of Science, INDIA

M2-212.a COMPUTATIONAL MODELLING OF FLOW AND DRUG TRANSPORT IN A MICROFLUIDIC DEVICE FOR SPHEROID CULTURES
Sina Kheiri, Eugenia Kumacheva, and Edmond W.K. Young
University of Toronto, CANADA
M2-213.a SURFACE TEXTURE MODULATES WALL SLIP IN MICROFLUIDIC FLOWS
Siyu Chen and Joe Fujiou Lo
University of Michigan, Dearborn, USA

T3-312.a CONCENTRATION GRADIENTS INSIDE MICRODROPLETS
Christian F. Chamberlayne, Juan Santiago, and Richard N. Zare
Stanford University, USA

T3-313.a TOWARD THE CHARACTERIZATION OF COMPLEX MICROVESSEL NETWORKS VIA IN-LINE FLOW RATE SENSING
Michael A. Daniele1,2, Vladimir A. Pozdin3, Patrick Erb1,2, and McKenna Downey1
1North Carolina State University, USA, 2University of North Carolina, Chapel Hill, USA, and 3Florida International University, USA

T4-412.a CREATIVE SHAPING OF 2D FLOW AND CONCENTRATION PROFILES IN MICROFLUIDIC CHAMBERS
Etienne Boulais and Thomas Gervais
Polytechnique Montréal, CANADA

W5-512.a ENHANCING MICROMIXING CAPABILITIES OF FLEXIBLE FLUOROPOLYMER MICROCAPILLARY FILMS WITH 3D PRINTED TEMPLATES: A COMPUTATIONAL FLUID DYNAMICS ANALYSIS
Kirandeep K. Gill1, Patrick Hester2, Pedro Estrela1, and Nuno M. Reis1
1University of Bath, UK and 2Lamina Dielectrics Ltd., UK

W6-612.a NUMERICAL SIMULATION AND EXPERIMENTAL ANALYSIS OF INERTIAL CELL FOCUSING IN A CONTRACTION-EXPANSION ARRAY (CEA) MICROCHANNEL
Ali C. Atik, Ender Yıldırım, and Haluk Külah
Middle East Technical University, TURKEY

Th7-711.a 2D PHASE-FIELD SIMULATION AND EXPERIMENTAL VALIDATION OF DROplet FORMATION IN A FLOW-FOCUSING JUNCTION
Ali C. Atik, Ender Yıldırım, and Haluk Külah
Middle East Technical University, TURKEY

Th7-712.a NUMERICAL MODELING OF SEQUENTIAL SEGMENTATION FOR ENHANCEMENT OF MICROMIXING
Ibragim Abu Dagga1,2 and Mohamed Abdelgawad1
1American University of Sharjah, UAE and 2Khalifa University of Science and Technology, UAE

Th8-811.a BEHAVIOR OF PHASE CHANGE SLURRY IN A MICROCHANNEL
Vikram Soni, Hannah McPhee, Sepehr Saber, Jason Riordon, and David Sinton
University of Toronto, CANADA

Th8-812.a RESIDENCE TIME DISTRIBUTION IN MICROMIXERS: SCALE-UP EFFECTS
Harrson S. Santana1 and João L. Silva Jr.2
1University of Campinas, BRAZIL and 2Federal University of ABC, BRAZIL
M1-114.a HIGH-THROUGHPUT SPERM SORTING BY A FLAT RHEOTAXIS MICROFLUID DEVICE
Suei-Shen Wang¹ and Fan-Gang Tseng¹,²
¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

M2-214.a TO STICK OR NOT TO STICK: PREDICTING PARTICLE CAPTURE ON A SURFACE IN A MICROCHANNEL
Donatien Mottin¹,², Florence Razan², Frédéric Kanoufi³, and Marie-Caroline Jullien¹
¹University of Rennes, FRANCE, ²École Normale Supérieure de Rennes, FRANCE, and
³Université de Paris, FRANCE

T3-314.a IMPROVED UNDERSTANDING OF PARTICLE MIGRATION IN SHEAR THINNING VISCOELASTIC FLUID
Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹
¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA

T4-413.a CONCENTRATION-DEPENDENT LOSS OF CHARGED ANALYTES IN PAPERFLUIDIC DEVICES
Siddhant Jaitpal¹, Priyanka Naik¹, Shashwat Banerjee², and Debjani Paul¹
¹Indian Institute of Technology, Bombay, INDIA and
²Maharashtra Institute of Medical Education and Research Medical College, INDIA

W5-513.a DIFFERENTIAL 3D-VISCOELASTIC FOCUSING OF PARTICLES IN A RECTANGULAR MICROFLUIDIC CHANNEL
Ludovica Barilla, Jian Zhou, Zhangli Peng, and Ian Papautsky
University Illinois, Chicago, USA

W6-613.a DNA CONCENTRATION WAVE FORMATION IN PILLAR ARRAYS
Oskar E. Ström, Jason P. Beech, and Jonas O. Tegenfeldt
Lund University, SWEDEN

Th7-713.a EFFECT OF DEAN FLOWS ON SUB-MICRON PARTICLES IN LOW ASPECT RATIO MICROCHANNELS – ANALYSIS OF DFF
Suhanya Duraiswamy¹ and Lin Yue Lanry Yung²
¹Indian Institute of Technology, Hyderabad, INDIA and ²National University of Singapore, SINGAPORE

Th8-813.a EFFECTS OF PARTICLE SIZE AND FLUID ELASTICITY ON ELASTO-INERTIAL MIGRATION IN SPIRAL CHANNEL
Hua Gao, Jian Zhou, and Ian Papautsky
University of Illinois, Chicago, USA

M2-215.a LITHOGRAPHY SOLUTIONS FOR MICROFLUIDICS AND BIOTECH
Charles Turk
OAI, USA

T3-383.a FROM SURFACTANTS TO HYDROGEL BEADS TO EMULSION TEMPLATING KITS
Robert Lintner, Brian O’Day, Anne-Milda Pu and Roger Nassar
RAN Biotechnologies Inc.
Late News

M1-172.a ARRESTED COALESCENCE OF LIQUID MARBLES TRIGGERED BY ELECTROSTATICS
Yage Zhang¹, Chentianyi Yang¹, Shuai Yuan¹, Xiaoxue Yao², and Ho Cheung Shum¹
¹University of Hong Kong, HONG KONG and ²Shenzhen University, CHINA

M1-173.a RECTIFIED AC ELECTROOSMOSIS INDUCED BY SURFACE CONDUCTANCE AROUND INSULATING MICROPPOSTS
Victor Calero¹, Raúl Fernández-Mateo¹, Pablo García-Sánchez², Antonio Ramos², and Hywel Morgan¹
¹University of Southampton, UK and ²Universidad de Sevilla, SPAIN

M2-272.a A NOVEL MICROFLUIDIC DEVICE TO FLEXIBLY GENERATE GROOVED MICROFIBERS AS ANISOTROPIC SCAFFOLDS
Meng-Qian Zhao, Hai-Tao Liu, Hui Wang, Ting-Ting Tao, and Jian-Hua Qin
Chinese Academy of Sciences, CHINA

M2-273.a DIGITAL-WGS: AUTOMATED, HIGHLY EFFICIENT WHOLE-GENOME SEQUENCING OF SINGLE CELLS BY DIGITAL MICROFLUIDICS
Qingyu Ruan¹, Weidong Ruan¹, Xiaoye Lin¹, Zhi Zhu¹, and Chaoyong Yang¹,²
¹Xiamen University, CHINA and ²Shanghai Jiao Tong University, CHINA

T3-373.a CELL MANIPULATION VIA ACOUSTIC FORCES IN A SPHERICAL MICROCHAMBER
Bettina Sailer, Rune Barnkob, and Oliver Hayden
Technical University of Munich, GERMANY

T3-374.a DOUBLE MONOCLONAL DISPLAY FOR HIGHLY EFFICIENT PEPTIDE SCREENING
Junxia Wang, Yuyu Tan, Jiajun Ling, Mingxia Zhang, Wenli Liu, Mengjiao Huang, Jia Song, Ao Li, Yanling Song, Zhi Zhu, and Chaoyong Yang
Xiamen University, CHINA

T4-473.a HIGH RESOLUTION EXOSOME TYPING METHOD FOR CANCER DIAGNOSIS
Bingqian Lin¹, Lingling Wu², Zhi Zhu¹, Yanling Song¹, and Chaoyong Yang¹,²
¹Xiamen University, CHINA and ²Shanghai Jiao Tong University, CHINA

T4-474.a HIGHLY EFFICIENT ACOUSTOPHORETIC SINGLE CELL-SUPERNATANT SEPARATION INSIDE NANOLITER DROPLETS
Michael Gerlt¹, Dominik Haidas², Alexandre Ratschat¹, Philipp Suter¹, Petra Dittrich², and Jürg Dual¹
¹ETH Zürich, SWITZERLAND and ²ETH Zürich, Basel, SWITZERLAND

W5-572.a DYNAMIC FORMATION OF MULTIPLE PRECONCENTRATED MOLECULE PLUGS
Barak Sabbagh¹, Elad Stolovich², Sinwook Park¹, and Gilad Yossion¹
¹Technion - Israel Institute of Technology, ISRAEL and ²Harvard University, USA

W5-573.a HIGH THROUGHPUT, MOBILE DIGITAL FLUORESCENCE DROPLET ASSAYS USING TIME DOMAIN EXCITATION MODULATION
Zijian Yang, Yasemin Atiyas, and David Issadore
University of Pennsylvania, USA

W6-674.a MAPPING THE PHASE DIAGRAM OF DNA HYDROGELS WITH DROPLET MICROFLUIDICS
Guilhem Mariette¹,², Nicolas Lobato-Dauzier², Robin Deteix², Mia Zhang², Shu Okumura², Yusuke Sato³, Masahiro Takinoue⁴, Teruo Fujii⁴, and Anthony J. Genot⁴
¹Ecole Normale Supérieure, FRANCE, ²University of Tokyo, JAPAN and ³Tohoku University, JAPAN, and ⁴Tokyo Institute of Technology, JAPAN
ACCELERATING THE FINITE-ELEMENT METHOD FOR REACTION-DIFFUSION SIMULATIONS ON GPUs WITH CUDA
Hedi Sellami, Leo Cazenille, Teruo Fujii, Masami Hagiya, Nathanael Aubert-Kato, and Anthony J. Genot
University of Tokyo, JAPAN

NOVEL APPROACH FOR ADVANCED PERSONALIZED CANCER TREATMENT
Anna Luise Grab1, Ramesh Utharala1, Thorsten Cramer2,3, Julio Saez-Rodriquez4, Nicolas Peschke1, Denes Türei1,4, Wenwei Ma1, Vida Vafaizdah1, Federica Eduati5, and Christoph Merten1,6
1European Molecular Biology Laboratory, GERMANY, 2RWTH Aachen, Germany, 3Maastricht University, THE NETHERLANDS, 4Faculty of Medicine of Heidelberg, GERMANY, 5Eindhoven University of Technology, THE NETHERLANDS, and 6Swiss Federal Institute of Technology Lausanne, SWITZERLAND

VACUUM POUCH MICROFLUIDIC SYSTEM FOR THE APPLICATION OF DIGITAL PCR
Cheng-Je Lee and Yu-Hsiang Hsu
National Taiwan University, TAIWAN

Microscale Fabrication, Patterning, and Integration

A VACUUM-DRIVEN MICROFLUIDIC ARRAY FOR MULTI-STEP SAMPLE DIGITALIZATION
Jiumei Hu, Liben Chen, Hui Li, Kuangwen Hsieh, Pengfei Zhang, and Tza-Huei Wang
Johns Hopkins University, USA

ENGINEERING MULTIPLY ENCAPSULATED MICROGELS FOR CONTROLLED LONG-TERM DRUG DELIVERY
Jing Liu, Cassidy Marie Enloe, Ralph McBride, John S. Oakey, and Katie Li-Oakey
University of Wyoming, USA

FULLY PRINTED PIEZOELECTRIC DEVICES
Marc Alique1, Marcos Duque2, Claudia Delgado1, Paul Lacharmoise1, Gonzalo Murillo2, and Ana Moya1
1Fundació Eurecat, SPAIN and 2IMB-CNMI (CSIC), SPAIN

NANOPARTICLE DETECTION BY SOLID-STATE NANOPORE INTEGRATED INTO A REUSABLE MICROFLUIDIC DEVICE
Izadora Mayumi Fujinami Tanimoto1,2, Benjamin Cressiot3, Jean Roman1, Nathalie Jarrous1,2, Gilles Patriarche1, Bruno Le Pioufle1, Juan Pelta1,2,3, and Laurent Bacri1
1Université Paris-Saclay, FRANCE, 2Université d’Evry, FRANCE, and 3 CY Cergy Paris Université, FRANCE

WHY ARE 3D-PRINTED MOLDS INHIBITING PDMS CURING?
Bastien Venzac1, Shanti Deng1, Ziad Mahmoud2, Aufried Lenferink1, Fabrice Bray2, Cees Otto1, Christian Rolando2, and Séverine Le Gac1
1University of Twente, THE NETHERLANDS and 2Université de Lille, FRANCE

AN INTEGRATED FLEXIBLE PLATFORM WITH PRINTED ORGANIC ELECTROCHEMICAL AND FIELD-EFFECT TRANSISTORS FOR BIOCHEMICAL SENSING
Silvia Demuru1, Khalil Chennit2, Vincent Noël2, Benoît Piro2, Giorgio Mattana4, and Danick Briand1
1École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and 2Paris Diderot University, FRANCE

ETCHED SILICON µDICER FOR UNIFORM SECTIONING OF TISSUE SAMPLES
Seth C. Cordts, Saisneha Koppaka, Nicolas Castaño, and Sindy K.Y. Tang
Stanford University, USA
M2-218.b IN-SITU 3D WRITING OF MICROELECTRODES BASED ON PLASMA-ASSISTED MICROPLATING
Shinya Sakuma, Natsumi Basaki, Keita Ichikawa, and Yoko Yamanishi
Kyushu University, JAPAN

M2-219.b OPTICAL GROWTH AND PATTERNING OF HIGHLY CONDUCTIVE SILVER ON ULTRASMOOTH NANOCOLLOSE PAPER
Yueyue Pan, Sina Kheiri, Zhen Qin, Binbin Ying, Peng Pan, Ran Peng, and Xinyu Liu
University of Toronto, CANADA

T3-315.b ANALYSIS OF INSERTION FORCE OF POLYMER MICRONEEDLES WITH HIGH ASPECT RATIO
Yukihiro Kanda¹, Hiroaki Takehara¹,², and Takanori Ichiki¹,²
¹University of Tokyo, JAPAN and ²Kawasaki Institute of Industry Promotion, JAPAN

T3-316.b FABRICATION AND CHARACTERIZATION OF 3D MICROFLUIDICS BLADES TO IMPROVE THE CUTTING OF BIOLOGICAL MATERIALS
Stanford University, USA

T3-317.b MECHANICALLY DIRECTING THE DIFFERENTIATION AND ORGANISATION OF STEM CELL TO RECAPITULATE KEY LIVER FUNCTION
Mary Okesola, Tamir S. Rashid, and Ciro Chiappini
King’s College London, UK

T3-318.b PIXELATED CHEMICAL DISPLAYS FOR DRY SURFACE PATTERNING IN INDUSTRIAL ROLL-TO-ROLL PROCESSES
Pierre-Alexandre Goyette¹ and Thomas Gervais¹,²
¹École Polytechnique de Montréal, CANADA and ²Université de Montréal, CANADA

T4-414.b 2D TO 3D TRANSFORMATION OF PEN-DRAWING
Sumin Lee¹, Seo Woo Song¹, Jun Kyu Choe², Na-Hyang Kim¹, Junwon Kang¹, Ju-Young Kim², Jiyun Kim², and SungHoon Kwon¹
¹Seoul National University, KOREA and ²Ulsan National Institute of Science & Technology (UNIST), KOREA

T4-415.b BIOMIMETIC MICROFLUIDIC SYSTEM FOR EVALUATION OF SPERM NAVIGATION BEHAVIOR
Yimo Yan, QiQi Fu, Boxuan Zhang, and Ran Liu
Tsinghua University, CHINA

T4-416.b FABRICATION AND CHARACTERIZATION OF LITHIUM DOPED NAFION MEMBRANE AND HOLLOW GLASSY CARBON MICRONEEDLE FOR MICROPUMP BASED DRUG DELIVERY
Arkaprava Datta, Richa Mishra, Shatabisha Biswas, Jhimli Sarkar Manna, Riddhiman Dhar, and Tarun Kanti Bhattacharyya
Indian Institute of Technology, Kharagpur, INDIA

T4-417.b METAMOLDING: A MODULAR APPROACH TOWARD LARGE SCALE MICROPATTERNING AND MICROFLUIDICS
Jung Y. Han, Pranav Menon, and Don L. DeVoe
University of Maryland, College Park, USA

T4-418.b QUANTITATIVE DESIGN STRATEGY OF THE RESOLUTION AND SCREEN AREA OF MICROFLUIDIC REFLECTIVE DISPLAY WITH SUB-PIXELS
Jumpei Muramatsu and Hiroaki Onoe
Keio University, JAPAN
W5-514.b 360° LIGHT HARVESTING REFLECTOR FULLY INTEGRATED ON MICRFLUIDIC PLATFORM
Filippo Storti1,2, Silvio Bonfadini1, and Luigino Criante1
1Istituto Italiano di Tecnologia, ITALY and 2Politecnico di Milano, ITALY

W5-515.b CELL TRANSPORT WITH ADDRESSABLE MICROCHANNEL FORMED BY GEL ACTUATORS
Hiroki Wada1, Yuha Koike1, Yoshiyuki Yokoyama2, and Takeshi Hayakawa1
1Chuo University, JAPAN and 2Toyama Industrial Technology Research and Development Center, JAPAN

W5-516.b FABRICATION OF ACTIVE MICROFLUIDICS ON GLASS WITH SEMICONDUCTOR GRADE MATERIAL
Boshen Liang1,2, Grim Keulemans1, Brice Eychenne1, Shruti Jambaldinni1, David Cheyns1, Tim Stakenborg1, Veronique Rochus1, Paul Heremans1,2, and Lei Zhang1
1IMEC, BELGIUM and 2KU Leuven, BELGIUM

W5-517.b MICRO-PATTERNED PAPER FOR DRUG TESTING OF 3D TUMOR MODELS
Bisan Samara1, Pavithra Sukumar1, and Mohammad A. Qasaimeh1,2
1New York University Abu Dhabi, UAE and 2New York University, USA

W5-518.b RADIOPAQUE HYDROGEL MICROFIBER FOR ARTERIAL EMBOLIZATION
Naoki Takakura1, Hiroki Ohta2, Teppie Komatsu2, Yuta Kurashina2, Hirotaka J. Okano2, and Hiroaki Onoe1
1Keio University, JAPAN, 2Jikei University School of Medicine, JAPAN, and 3Tokyo Institute of Technology, JAPAN

W6-614.b 3D PRINTED MULTIPURPOSE ATOMIC FORCE MICROSCOPY PROBES
Ayoub Glia, Muhammedin Deliorman, and Mohammad A. Qasaimeh
1New York University Abu Dhabi, UAE and 2New York University, USA

W6-615.b DIGITAL LIGHT PROCESSING-BASED 3D PRINTED HYDROGEL SCAFFOLDS FOR ARTICULAR CARTILAGE TISSUE ENGINEERING
Chuan-Yung Wu1, Yun-Jie Hao1, Yu-Chuan Su1, and Fan-Gang Tseng1,2
1National Tsing Hua University, TAIWAN and 2Academia Sinica, TAIWAN

W6-616.b FABRICATION OF HIGHLY ORDERED POLYCAPROLACTONE MICROSPHERES FOR IN VITRO DRUG DELIVERY USING MICROFLUIDIC TECHNOLOGIES
Alejandro Forigua, Laila Abelseth, Stephanie M. Willerth, and Katherine S. Elvira
University of Victoria, CANADA

W6-617.b MICROFLUIDIC DEVICES FOR PLASMA SEPARATION FABRICATED WITH A HIGH RESOLUTION CUSTOM MADE 3D PRINTER
Sandra Garcia-Rey1,2, Gregory P. Nordin1, Lourdes Basabe-Desmonts1,2, Fernando Benito-Lopez1, and Adam T. Woolley2
1University of the Basque Country, SPAIN, 2Brigham Young University, USA, and 3IKERBASQUE, Basque Foundation for Science

W6-618.b STRETCHABLE INERTIAL MICROFLUIDICS
Hedieh Fallahi, Jun Zhang, Hoang-Phuong Phan, and Nam-Trung Nguyen
Griffith University, AUSTRALIA

Th7-714.b 3D SKIN MICROFLUIDIC PHANTOM FOR IN VITRO WEARABLE TESTING
Genís Rabost-Garcia1,2, Oscar Carreras-Gallo1, Valeria Colmena2, Javier Aguilar2, Jaime Punter-Villagrasa2, Francesc X. Muñoz2,3, Josep Farré-Lladós1, and Jasmina Casals-Terré1
1Universitat Politècnica de Catalunya, SPAIN, 2Onalabs Inno-hub S.L., SPAIN, and 3Centro Nacional de Microelectrónica, SPAIN
DNA MICRO-DISK FOR THE EFFICIENT MANAGEMENT OF DNA-BASED DATA STORAGE
Hansol Choi¹, Yeongjae Choi¹, Amos Chungwon Lee¹, Wook Park², and Sunghoon Kwon¹
¹Seoul National University, KOREA and ²Kyung Hee University, KOREA

FOCUSING OF MICROPARTICLES AT LOW REYNOLDS NUMBERS
Tianlong Zhang¹,², Yaxiaer Yalikun¹, Misuzu Namoto¹, Kazunori Okano¹, Yo Tanaka¹, Ming Li², and Yoichiroh Hosokawa¹
¹Nara Institute of Science and Technology, JAPAN, ²Macquarie University, AUSTRALIA, and ³RIKEN, JAPAN

MULTIPLEXED CONVECTION-ENHANCED KINETICS IN MICROTITER PLATES
Iago Pereiro, Anna Fomitcheva Khartchenko, Robert D. Lovchik, and Govind V. Kaigala
IBM Research - Europe, SWITZERLAND

TUNING FIELD NON-UNIFORMITY ACROSS MICROCHANNELS FOR FLOW-THROUGH DIELECTROPHORETIC SEPARATIONS
XuHai Huang, Karina Torres-Castro, Walter Varhue, and Nathan S. Swami
University of Virginia, USA

A GENERALIZED SEMI-AUTOMATED RATIONAL DESIGN OF MICROPILLAR ARRAYS FOR MECHANOBIOLOGICAL STUDIES
Christopher J. Stubbs¹, Samuel O. Sofela²,³, Navajit S. Baban²,³, and Yong-Ak Song²,³
¹University of Idaho, USA, ²New York University Abu Dhabi, UAE, and ³New York University, USA

EASILY-FABRICATED FLUOROPOLYMER CHIPS FOR SENSITIVE LONG-TERM ABSORBANCE MEASUREMENT IN DROPLET MICROFLUIDICS
Adrian M. Nightingale¹, Sammer-ul Hassan¹, Kyriacos Makris², Wahida T. Bhuiyan¹, Terry J. Harvey¹, and Xize Niu¹,²
¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

FOUR-DIMENSIONAL PHOTONIC MICRO-ACTUATORS FOR MICROFLUIDICS APPLICATIONS
Marc del Pozo¹, Colm Delaney², Cees W.M. Bastiaansen¹,³, Dermot Diamond⁴, Albert P.H.J. Schenning¹, and Larisa Florea²
¹Eindhoven University of Technology, THE NETHERLANDS, ²Trinity College Dublin, IRELAND, ³Queen Mary University of London, UK and ⁴Dublin City University, IRELAND

NanoFACEs: AN OPTICALLY TRANSPARENT NANOPAPER-BASED DEVICE FOR CELL CULTURE
Siwan Park¹, Binbin Ying¹,², Edmond W.K. Young¹, and Xinyu Liu¹
¹University of Toronto, CANADA and ²McGill University, CANADA

VISCOELASTIC FOCUSING OF PARTICLES IN TRIANGULAR MICROCHANNEL
Prithviraj Mukherjee, Jian Zhou, and Ian Papautsky
University of Illinois, Chicago, USA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-120.b</td>
<td>POLYMER-BASED NANOFLUIDIC DEVICES FOR RESISTIVE-PULSE SENSING OF HEPATITIS B VIRUS CAPSIDS</td>
<td>Sheng-Yuan Huang, Mi Zhang, Zhongchao Zhao, Adam Zlotnick, and Stephen C. Jacobson Indiana University, USA</td>
</tr>
<tr>
<td>M2-220.b</td>
<td>APTAMER-BASED NANOFLUIDICS FOR THE MOLECULAR DETECTION IN ULTRA-SMALL VOLUME</td>
<td>Jinbin Yang¹, Hiroki Kamai¹, Yong Wang², and Yan Xu¹,³</td>
</tr>
<tr>
<td></td>
<td>¹Osaka Prefecture University, JAPAN, ²Pennsylvania State University, USA, and ³Japan Science and Technology Agency (JST), JAPAN</td>
<td></td>
</tr>
<tr>
<td>M2-221.b</td>
<td>SURFACE PATTERNING OF NANOFLUIDIC CHANNELS AND ITS EVALUATION USING STREAMING CURRENT</td>
<td>Kyojiro Morikawa¹, Haruki Kazumi¹, Ryoichi Ohta¹, and Takehiko Kitamori¹,²</td>
</tr>
<tr>
<td></td>
<td>¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAIN</td>
<td></td>
</tr>
<tr>
<td>T3-319.b</td>
<td>COATING MOFs ON MAMMALIAN CELL FOR BIOMEDICAL APPLICATIONS</td>
<td>Laura Ha and Dong-Pyo Kim</td>
</tr>
<tr>
<td></td>
<td>Pohang University of Science and Technology (POSTECH), KOREA</td>
<td></td>
</tr>
<tr>
<td>T3-320.b</td>
<td>SELECTIVE ELECTRICAL SWITCHING OF MOLECULAR MOTORS BY DYNAMIC VIRTUAL CATHODE</td>
<td>Kenta Hatazawa¹, Ryuzo Kawamura², and Takayuki Hoshino¹</td>
</tr>
<tr>
<td></td>
<td>¹Hirosaki University, JAPAN and ²Saitama University, JAPAN</td>
<td></td>
</tr>
<tr>
<td>T4-419.b</td>
<td>DEVELOPMENT OF FABRICATION METHOD FOR CONCENTRIC CONNECTION OF MICROCHANNEL AND NANOCHANNEL</td>
<td>Kyojiro Morikawa¹, Erina Takeuchi¹, and Takehiko Kitamori¹,²</td>
</tr>
<tr>
<td></td>
<td>¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAIN</td>
<td></td>
</tr>
<tr>
<td>T4-420.b</td>
<td>TECHNOLOGICAL ASPECTS OF DEVICES FOR EFFICIENT ION CONCENTRATION POLARIZATION AND ELECTRODRIVE SEPARATION WITH ULTRA-SHALLO NANOCHANNELS</td>
<td>Elizaveta Vereshchagina¹, Yuliya Shakalisava², Aina Suphellen¹, Sigurd Moe¹, and Thomas Hankemeier²</td>
</tr>
<tr>
<td></td>
<td>¹SINTEF, NORWAY and ²Leiden University, THE NETHERLANDS</td>
<td></td>
</tr>
<tr>
<td>W5-519.b</td>
<td>FABRICATION OF SUB-40-NANOMETER NANO-IN-NANO STRUCTURES IN NANOCHANNELS</td>
<td>Hiroki Kamai¹ and Yan Xu¹,²</td>
</tr>
<tr>
<td></td>
<td>¹Osaka Prefecture University, JAPAN and ²Japan Science and Technology Agency (JST), JAPAN</td>
<td></td>
</tr>
<tr>
<td>W5-520.b</td>
<td>TWO-PHOTON POLYMERIZATION OF MASTERS FOR POLYMERIC NANOPILLAR REPLICATION</td>
<td>Niamh Geoghegan¹,², Colm Delaney¹, Larisa Florea¹, Mark O’Loughlin¹, and Susan M. Kelleher¹,²</td>
</tr>
<tr>
<td></td>
<td>¹University College Dublin, IRELAND, ²National University of Ireland, Galway, IRELAND, and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trinity College Dublin, IRELAND</td>
<td></td>
</tr>
<tr>
<td>W6-619.b</td>
<td>INTEGRATION OF GLASS DEFORMATION NANOCHANNEL OPEN/CLOSE VALVES INTO A NANOFLUIDIC DEVICE AND FEMTO-LITER FLUID OPERATIONS</td>
<td>Hiroki Sano¹, Yutaka Kazoe², Kyojiro Morikawa¹, and Takehiko Kitamori¹,³</td>
</tr>
<tr>
<td></td>
<td>¹University of Tokyo, JAPAN, ²Keio University, JAPAN, and ³National Tsing Hua University, TAIWAN</td>
<td></td>
</tr>
</tbody>
</table>
b - Micro- and Nanoengineering

Micropumps, Valves, and Dispensers

M1-121.b A MODULAR MICROFLUIDIC PARALLEL DISPENSING SYSTEM
Dean de Boer, Anke R. Vollertsen, Albert van den Berg, Andries D. van der Meer, and Mathieu Odijk
University of Twente, THE NETHERLANDS

M2-222.b AUTOMATED BLOOD PLASMA SEPARATION AND METERING FOR CLINICAL SETTINGS AND CENTRIFUGAL MICROFLUIDICS DEVICES
Noa Lapins, Amin Kazemzadeh, and Aman Russom
KTH Royal Institute of Technology, SWEDEN

T3-321.b AUTONOMOUS CAPILLARY MICROFLUIDIC DEVICES WITH CONSTANT FLOW RATE AND TEMPERATURE-CONTROLLED VALVING
Lanhui Li1,2, Eiko Westerbeek1, Jeroen Vollenbroek1,3, Lingling Shui2, Mathieu Odijk1, and Jan Eijkel1
1University of Twente, THE NETHERLANDS, 2South China Normal University, CHINA, and 3University Medical Center, THE NETHERLANDS

T4-421.b BARRIER-FILM BASED REAGENT STORAGE AND RELEASE ON MICROFLUIDIC PLATFORMS FOR SAMPLE-TO-ANSWER AUTOMATION OF BIOASSAYS
Rohit Mishra, Darren McAuley, Natalia Rolinska, David Boyle, and Jens Ducrèe
Dublin City University, IRELAND

W5-521.b DEVELOPMENT OF A MIST-BASED HYDROGEL CROSSLINKING PRINTHEAD FOR DROPLET-BASED BIOPRINTING
Ben MacCallum, Sara Badr, Emad Naseri, Armin Bodaghkhani, and Ali Ahmadi
University of Prince Edward Island, CANADA

W6-620.b 3D-PRINTED PERISTALTIC PUMP KIT
Terry Ching1,2, Yi-Chin Toh2,3, and Michinao Hashimoto1
1Singapore University of Technology and Design, SINGAPORE, 2National University of Singapore, SINGAPORE, and 3Queensland University of Technology, AUSTRALIA

W6-621.b METACHRONAL ACTUATION OF MAGNETIC ARTIFICIAL CILIA GENERATES STRONG MICROFLUIDIC PUMPING
Shuaizhong Zhang, Zhiwei Cui, Ye Wang, and Jaap den Toonder
Eindhoven University of Technology, THE NETHERLANDS

Th7-720.b A MICRO-MACHINED HYDRAULIC FLOW AND COMPLIANCE TUNER
Cornelia Nef1, Peter Heeb2, Sabrina Frey1, Dominic Obrist4, and André Bernard5
1OST University of Applied Science, SWITZERLAND, 2FISBA AG, SWITZERLAND, 3CorFlow Therapeutics AG, SWITZERLAND, 4University of Bern, SWITZERLAND, and 5matriq AG, SWITZERLAND
Th7-721.b
RECIPIROCATING FLOW-ASSISTED FINGER-ACTUATED DNA EXTRACTION DEVICE
Dong Hyun Han, Juhwan Park, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th8-820.b
A MICROFLUIDIC VALVING ARRAY FOR WEARABLE BIOFLUID MANAGEMENT
Jiawei Tan, Haisong Lin, Shuyu Lin, Wenzhuo Yu, Jialun Zhu, Yichao Zhao, Xuanbing Cheng, Siyang Yang, Eric Tang, and Sam Emaninejad
University of California, Los Angeles, USA

Th8-821.b
ROTARY ACTUATION SYSTEM FOR MAGNETIC BEADS
Fujio Tsumori and Kazuki Tokumaru
Kyushu University, JAPAN

b - Micro- and Nanoengineering

Bonding, Sealing & Interfacing Technologies

M1-122.b
DIRECT LASER WRITING IN THERMOPLASTIC MICROCHANNELS BY IN SITU PHOTOTOINITIATION
Jung Y. Han, Sarah Warshawsky, and Don L. DeVoe
University of Maryland, College Park, USA

M2-223.b
SIMULATION OF TUMOR CELL EXTRAVASATION ON A PHOTOLITHOGRAPHY-FREE MICROFLUIDIC DEVICE
Yuichiro Asaumi¹ and Naoki Sasaki¹,²
¹Toyo University, JAPAN and ²Rikkyo University, JAPAN

b - Micro- and Nanoengineering

New Materials and Surface Modification

M1-123.b
MECHANISTIC STUDY OF OXYGEN-SCAVENGING PROPERTIES OF OFF-STOICHIOMETRIC THIOL-ENES
Iiro Kiiski¹, Päivi Järvinen¹, Ville Jokinen², and Tiina Sikanen¹
¹University of Helsinki, FINLAND and ²Aalto University, FINLAND

M2-224.b
MULTI-MODAL ANALYSIS OF TUMOR-DERIVED EXTRACELLULAR VESICLES IMMUNOCAPTURED FROM PLASMA
Pepijn Beekman¹, Agustin Enciso-Martinez², Melissa Piontek³, Leon Terstappen³, Wouter Roos³, Cees Otto³, and Séverine Le Gac¹
¹University of Twente, THE NETHERLANDS and ²Rijksuniversiteit Groningen, THE NETHERLANDS

T3-322.b
DEVELOPMENT OF A FLOW-FREE GRADIENT GENERATOR USING A SELF-ADHESIVE THIOL-ACRYLATE MICROFLUIDIC RESIN/HYDROGEL (TAMR/H) HYBRID SYSTEM
Anowar H. Khan¹, Noah M. Smith¹, Michael P. Tullier¹, B. Seth Roberts¹, Derek Englert¹, John A. Pojman¹, and Adam T. Melvin¹
¹Louisiana State University, USA and ²University of Kentucky, USA

T3-323.b
NANOCATALYSTS FOR MAGNETIC FILED ASSISTED BIOFILM ERADICATION
Mamata Karmacharya¹,², Sumit Kumar¹,², and Yoon-Kyoung Cho¹,²
¹Ulsan National Institute of Science & Technology (UNIST), KOREA and ²Institute for Basic Science (IBS), KOREA

T4-422.b
ELECTROACTIVE POLYMER MEMBRANES AS SUBSTRATES FOR POINT-OF-CARE DEVICES
Ricardo Brito-Pereira¹, André S. Macedo¹, Senentxu Lanceros-Méndez¹,²,³, and Vanessa F. Cardoso¹
¹University of Minho, PORTUGAL, ²BCMaterials, SPAIN, and ³IKERBASQUE, Basque Foundation for Science, SPAIN
W5-522.b EVALUATION OF MINERAL AND BACTERIA ADHESION ON MICROCHANNEL COATED WITH DIAMOND LIKE CARBON AND MPC BASED COPOLYMER
Tomomi Sato, Shun Murooka, Toshihiro Kasama, Zhou Lu, Madoka Takai, and Ryo Miyake
University of Tokyo, JAPAN

W6-622.b FABRICATION OF GOLD-NANORINGS FOR MASSIVELY PARALLEL INTRACELLULAR DELIVERY
Loganathan Mohan¹, Ren Hattori¹, Miho Ishii-Teshima¹, Sathish Sundar Dophil Kumar², Srabani Kar¹, Tuhin Subhra Santra², Takayuki Shibata¹, and Moeto Nagai¹
¹Toyoashi University of Technology, JAPAN, ²University of Johannesburg, SOUTH AFRICA

Th7-722.b HOLIFAB: PRECISE FLOW CONTROL USING PHOTO ACTUATED HYDROGEL VALVES AND PI CONTROLLED LED ACTUATION FOR MICROFLUIDIC MEMS.
Ruairí Barrett, Komala Pandurangan, Akshay Shinde, Dermot Diamond, and Margaret McCaul
Dublin City University, IRELAND

Th8-822.b MECHANICAL CHARACTERIZATION OF SPIDER SILK NANOMEMBRANES
Linnea Gustafsson, Christos Panagiotis Tasiopoulos, Thijs Duursma, Ronnie Jansson, Thomas Christian Gasser, My Hedhammar, and Wouter van der Wijngaart
KTH Royal Institute of Technology, SWEDEN

T4-423.b RECONSTITUTION OF HUMAN PRIMORDIAL GERM CELL DEVELOPMENT FROM PLURIPOTENT STEM CELLS IN A SYNTHETIC EMBRYONIC ENVIRONMENT
Sajedeh Nasr Esfahani¹, Yi Zheng¹, Agnes M. Resto Irizarry¹, Yue Shao², Sicong Wang¹, Xufeng Xue¹, and Jianping Fu¹
¹University of Michigan, Ann Arbor, USA and ²Tsinghua University, CHINA

M1-124.b FROM LAB TO FAB: CONSIDERATIONS FOR DEVICE DESIGN AND MANUFACTURING OPTIONS FOR UPSCALING MICROFLUIDIC DEVICE PRODUCTION
Holger Becker, Nadine Hlawatsch, Richard Klemm, and Claudia Gärtner
microfluidic ChipShop GmbH, GERMANY

M2-282.b Hicomp - YOUR TRUSTED TECHNOLOGY AND SOLUTION PROVIDER FOR MICROFLUIDICS
Yexiam Wu
HiComp Microtech (Suzhou) Co., Ltd., CHINA

Th7-783.b MASKLESS ALIGNER TECHNOLOGY FOR THICK PHOTORESIST APPLICATIONS
Gregg Moore and Niels Wijnaendts van Resandt
Heidelberg Instruments, Inc., USA
| M1-174.b | CELLOPHANE-BASED ANALYTICAL DEVICES FOR PUMP-FREE LIQUID TRANSPORT AND BACKGROUND-TINTED COLORIMETRIC ASSAYS
Hiroki Shigemori, Kento Maejima, Hiroyuki Shibata, Yuki Hiruta, and Daniel Citterio
Koio University, JAPAN |
| M1-175.b | ON-CHIP BIDIRECTIONAL MICROFLUIDIC PUMPING ACTUATED REMOTELY BY ACOUSTIC WAVES
Tao Luo and Mingming Wu
Cornell University, USAch |
| M1-176.b | REVERSIBLE UNDERWATER-ADHESIVE HYDROGEL MICROSTRUCTURE BASED ON PHOTOCROSSLINKING GRADIENT
Jinsik Yoon and Wook Park
Kyung He University, KOREA |
| M2-274.b | DEMOCRATISED MICROFLUIDIC PROTOTYPING USING A 3D-PRINTED CLICK-AND-CONNECT SCAFFOLD LIBRARY
Robert R. Hughes, Harry Felton, and Andrea Diaz Gaxiola
University of Bristol, UK |
| M2-275.b | OPTICAL METHOD FOR THE MEASUREMENT OF TRANSIENT FLOW RATES OF A TPU-MEMBRANE-BASED MICROPUMP
Hannah Bott¹, Ronny Leonhardt¹, Franz Laermer¹, Roland Zengerle², and Jochen Hoffmann¹
¹Robert Bosch GmbH, GERMANY and ²University of Freiburg, GERMANY |
| M2-276.b | SIMPLE METHOD FOR MICRO-PATTERNED CONDUCTIVE HYDROGEL FABRICATION
Hyeli Kim, Goomin Kwon, Jungmok You, and Wook Park
Kyung He University, KOREA |
| T3-375.b | DESIGN AND MICROFABRICATION OF MICROREACTOR ARRAY FOR PLATE READER FOR E. COLI RESEARCH
Gaozhe Cai¹², Shilun Feng¹, Yang Liu¹, Wenshuai Wu¹, Jingbo Zhang¹, Jianhan Lin², and Ai-Qun Liu¹
¹Nanyang Technological University, SINGAPORE and ²China Agricultural University, CHINA |
| T3-376.b | STUDY OF THE FABRICATION OF MODULAR FLUIDIC/MICROFLUIDIC PLATFORM USING A LOW-CLASS 3D PRINTER
Isa Anshori¹, Vincent Lukito¹, Angelica Irene¹, Brian Yuliarto¹, and Briliant Adhi Prabowo²
¹Institut Teknologi Bandung, INDONESIA and ²International Iberian Nanotechnology Laboratory, PORTUGAL |
| T4-475.b | DEVELOPMENT OF A MICRO-MICROBIAL DOMESTICATION POD FOR IN-SITU MARINE BACTERIAL CULTIVATION
Sydney K. Wheatley¹, Christopher Cartmell¹, Bradley A. Haltli¹², Russell G. Kerr¹², and Ali Ahmadi¹
¹University of Prince Edward Island, CANADA and ²Nautilus Biosciences, CANADA |
| T4-476.b | THROMBOGENIC POLYMER SURFACE MANIPULATION OF MICROFLUIDIC CHIPS VIA ULTRAVIOLET LASER
Yi Xu¹, Guang Yu¹, Ruqiong Nie², and Zhigang Wu¹
¹Huazhong University of Science and Technology, CHINA and ²Sun Yat-Sen University, CHINA |
| W5-574.b | DUAL-SCALE PERMANENT MAGNET FOR ENHANCED MAGNETIC SORTING EFFICIENCY IN A MICROFLUIDIC SYSTEM
Lucie Descamps¹, Samir Mekkaoui¹, Marie-Charlotte Audry¹, Emmanuelle Laurencceau¹, Jessica Garcia¹, Léa Payen², Anne-Laure Deman¹, and Damien Le Roy²
¹Université Lyon 1, FRANCE and ²Hospices Civils de Lyon, FRANCE |
W5-575.b TRAFFIC-LIGHT-TYPE MICROFLUIDIC PAPER-BASED ANALITICAL DEVICE FOR HYDROGEN PEROXIDE DETECTION
Sera Ohta, Ryuya Hiraoka, Yuki Hiruta, and Daniel Citterio
Keio University, JAPAN

W6-675.b ACTIVE AND PASSIVE FLOW CONTROL BY PNEUMATIC ACTUATED FLEXIBLE VALVE ON SINGLE LAYER
Yoshiharu Bessho, Yingzhe Wang, and Keisuke Morishima
Osaka University, JAPAN

W6-676.b FABRICATION OF A MICROPARTICLE COATED WITH A GOLD NANO THIN FILM
Kibeom Kim and Wook Park
Kyung Hee University, KOREA

Th7-774.b BATTERY-FREE BUILT-IN MICROPUMP DRIVEN BY A SELF-PROPELLED DROplet
Taiji Okano1, Kazuki Otsubo2, Junya Wada2, and Hiroaki Suzuki2
1Tokyo University of Agriculture and Technology, JAPAN and 2Chuo University, JAPAN

Th7-775.b HYDROGEL-BASED Microswimmer MOVING TOWARDS THE TARGET POSITION WITH RECOGNITION OF ENVIRONMENTAL CHANGES
Cheolheon Park1, Youngjae Choi2, Sunghoon Kwon2, and Wook Park1
1Kyung Hee University, KOREA and 2Seoul National University, KOREA

Th8-872.b FULLY AUTOMATED IMMUNOASSAY IN A LAB-ON-A-FOIL DEVICE WITH LED-ACTUATED VALVES
Mireia Burdó-Masferrer1, Marfa Díaz-González1, Ana Sanchis2,3, M.-Pilar Marco2,3, César Fernández-Sánchez1,2, and Antonio Baldi1
1Institut de Microelectrònica de Barcelona, SPAIN, 2Institut de Química Avançada da Catalunya, SPAIN, and 3CIBER-BBN, SPAIN

Th8-873.b INK-JET PRINTED MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES RELYING ON QR CODE DETECTION
Aya Katoh, Kento Maejima, Yuki Hiruta, and Daniel Citterio
Keio University, JAPAN

c - Sensors and Detection Technologies

<table>
<thead>
<tr>
<th>Physical Sensors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-125.c HARDNESS MEASUREMENT BY MICROMANIPULATOR WITH EMBEDED SEMICONDUDTOR STRAIN GAUGE</td>
</tr>
<tr>
<td>Mitsuhiro Horade</td>
</tr>
<tr>
<td>National Defense Academy of Japan, JAPAN</td>
</tr>
<tr>
<td>M2-225.c LOVE WAVE SENSOR FOR DETECTION OF VISCOSITY CHANGES ON A CELL MONOLAYER</td>
</tr>
<tr>
<td>Pedro A. Segura Chavez1,2, Frederic Sarry1,2, Mohamed Lamine Fayeçal Bellaredj1, Jérémy Bonhomme1,2, Lucile Olive1, Denis Bysens1, Mourad Oudich3, and Paul G. Charette1</td>
</tr>
<tr>
<td>1Université de Sherbrooke, CANADA and 2Université de Lorraine, FRANCE</td>
</tr>
<tr>
<td>T3-324.c DEVELOPMENT OF A QCM-P SENSING SYSTEM FOR BIOLOGICAL DETECTION</td>
</tr>
<tr>
<td>Siqi Ji1, Berk Akinci2, Tory A. Farnping1, Thomas A. Radzik1, and Hongwei Sun1</td>
</tr>
<tr>
<td>1University of Massachusetts, Lowell, USA, 2Invitrometrix, USA, and 3Lowell High School, USA</td>
</tr>
<tr>
<td>T4-424.c WEARABLE MICROFLUIDIC SENSOR TO MONITOR SWEAT FLOW RATE AND ELECTROLYTE CONCENTRATION</td>
</tr>
<tr>
<td>Yuki Hashimoto1, Yuki Sakurai1,2, Takako Ishihara1, Kei Kuwabara1, and Hiroyoshi Togo1</td>
</tr>
<tr>
<td>1NTT Device Innovation Center, NTT Corporation, JAPAN and 2Nagaoka University of Technology, JAPAN</td>
</tr>
</tbody>
</table>
W5-523.c A FLEXIBLE AND STABLE STRAIN SENSOR BASED ON POLYIMIDE INCORPORATED WITH CARBON BLACK
Jie Wang, Yunfei Liu, Wenhan Chang, Shoule Sun, Chengchen Gao, Zhenchuan Yang, and Yilong Hao
Peking University, CHINA

W6-623.c CARBON NANOTUBE-PAPER COMPOSITE-CAPACITIVE SENSOR FOR RESPIRATORY MONITORING
Tianyi Li, Vigneshwar Sakthivelpathi, Seong-Joong Kahng, Zhongjie Qian, Sheila Goodman, Heather Wise, Anthony B. Dichiara, Youghoon Kwon, and Jae-Hyun Chung
University of Washington, USA

Th7-723.c A COMPACT MICROCALORIMETER FOR THE RAPID CHARACTERIZATION OF LIQUID THERMAL PROPERTIES
Sheng Ni1, Hanliang Zhu2, Pavel Neuzil2,3, and Levent Yobas1
1Hong Kong University of Science and Technology, HONG KONG, 2Northwestern Polytechnical University, CHINA, and 3Brno University of Technology, CZECH REPUBLIC

Th8-823.c DESIGN AND CONSTRUCTION OF A CONTINUOUS QUANTITATIVE FORCE MEASUREMENT MICRODEVICE FOR ARTIFICIAL SKELETAL MUSCLE
Masaki Harada, Tomohiro Nakamura, and Sho Yokoyama
Osaka Institute of Technology, JAPAN

c - Sensors and Detection Technologies

Chemical & Electrochemical Sensors

M1-126.c A PAPER-BASED DEVICE FOR INTEGRATED HIGH-THROUGHPUT COVID-19 DETECTION
Hao Sun1,2, Jianping Zheng1, Hui Dong1,2, and Yuan Jia4
1Fuzhou University, CHINA, 2Fujian Provincial Collaborative Innovation Center of High-End Equipment Manufacturing, CHINA, 3Fujian Provincial Hospital, CHINA, and 4Southeast University, CHINA

M1-127.c ELECTROCHEMICAL OLIGONUCLEOTIDE TEMPLATED REACTIONS
Robert B. Channon1, Philip Gillespie1, Md Nazmul Islam2, Xiaotong Meng1, Yu-Chih Chen1, Danny O'Hare1, and Sylvain Ladame1
1Imperial College London, UK and 2Teeside University, UK

M1-128.c MULTISTEP REACTIONS BY ALIGNED TABLET REAGENTS FOR LONG TERM MONITORING OF PLANT CULTURE SOLUTION
Yoko Azuma1,4, Toshihiro Kasama1,4, Yoshishige Endo1,4, Tetsushi Koide2,4, Chiharu Sone3,4, Masashi Komine3,4, Atsushi Ogawa3,4, and Ryo Miyake1,4
1University of Tokyo, JAPAN, 2Hiroshima University, JAPAN, 3Akita Prefectural University, JAPAN, and 4Japan Science and Technology Agency (JST), JAPAN

M1-129.c PRINTED MULTISENSING PATCH WITH INTEGRATED MICROFLUIDICS FOR WEARABLE SWEAT ANALYSIS APPLICATIONS
Brince Paul1, Silvia Demuru1, Rubaiyet Iftekharul Haque1, Peter van der Wal1, Céline Lafaye2, Mathieu Saubade2, and Danick Briand1
1École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and 2Centre Hospitalier Universitaire Vaudois (CHUV), SWITZERLAND

M2-226.c A THREAD-BASED ELECTROCHEMICAL SENSOR FOR SPATIAL MONITORING OF WOUND OXYGENATION
Junfei Xia, Wenxin Zeng, Wei Wang, Rachel Owyeung, Victor Arsenescu, and Sameer Sonkusale
Tufts University, USA
ELECTROCHEMICAL SENSOR FOR Mn DETECTION IN DRINKING WATER
Elena Boselli1, Zhizhen Wu1, Alexa Friedman2, Birgit Claus Hen1n, and Ian Papautsky1
1University of Illinois, Chicago, USA and 2Boston University School of Public Health, USA

NANOPORE DECODING FOR DNA COMPUTATION WITH PARALLEL SELF-ASSEMBLY
Sotaro Takiguchi and Ryuji Kawano
Tokyo University of Agriculture and Technology, JAPAN

TiO2 NANOtubeS-HYDROGEL BIOSENSOR SCAFFOLD FOR SWEAT MONITORING
Udara B. Gunatilake1, Edilberto Ojeda1, Sandra Garcia-Rey1, Lourdes Basabe-Desmonts1,2, and Fernando Benito-Lopez1
1University of the Basque Country, SPAIN and 2Basque Foundation of Science, IKERBASQUE, SPAIN

ANALYSIS OF ION COMPONENTS DERIVED FROM PARTICULATE MATTER USING ION SELECTIVE ELECTRODES
Haruka Yamauchi1, Taisuke Shimada1, Takao Yasui1,2, Tatsuro Goda3, Noritada Kaji4, Yuji Miyahara3, and Yoshinobu Baba1,5
1Nagoya University, JAPAN, 2Japan Science and Technology Agency (JST), JAPAN, 3Tokyo Medical and Dental University, JAPAN, 4Kyushu University, JAPAN, 5National Institutes for Quantum and Radiological Science and Technology, JAPAN

EMBEDDED SENSOR BASED ON TANDEM SMARTPHONE-MICROFLUIDIC DEVICE FOR THE DETECTION OF TNT IN SURFACE AND SEA WATERS
Jérémy Bell, Mustafa Biyikal, and Knut Rurack
Bundesanstalt für Materialforschung & -prüfung (BAM), GERMANY

NOVEL FORMAT OF A PAPER-BASED DEVICE FOR COMPETITIVE IMMUNOASSAYS
Takeshi Komatsu, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi
Hokkaido University, JAPAN

TOWARDS ON-SITE MONITORING OF SOIL NUTRIENTS VIA CAFETIERE-BASED EXTRACTION AND PAPER-BASED ANALYSIS
Samantha Richardson1, Samira AlHinai1, Jesse Gitaka2, Will M. Mayes1, Mark Lorch1, and Nicole Pamme1
1University of Hull, UK and 2Mount Kenya University, KENYA

ANALYSIS OF PARTICULATE MATTERS VIA SURFACTANT-ASSISTED IONIC CURRENT SENSING
Keiko Fujino1, Taisuke Shimada1, Takao Yasui1,2, Kazuki Nagashima3, Takashi Yanagida1, Noritada Kaji1, and Yoshinobu Baba1,4
1Nagoya University, JAPAN, 2Japan Science and Technology Agency (JST), JAPAN, 3Kyushu University, JAPAN, and 4National Institutes for Quantum and Radiological Science and Technology, JAPAN

HIGH-RESOLUTION BIOCHEMICAL ACTIVITY MEASUREMENTS WITH COMMERCIAL TRANSISTORS
Seulki Cho, Son T. Le, Curt A. Richter, and Arvind Balijepalli
National Institute of Standards and Technology (NIST), USA

ON-CHIP MONITORING OF PHOSPHATE VIA A DROPLET MICROFLUIDIC SENSOR
Bingyuan Lu1, Sharon Coleman1, Evanthia Papadopoulou2, Kyriacos Makris2, Brett M. Warren2, Adrian M. Nightingale1, and Xize Niu1
1University of Southampton, UK and 2SouthWestSensor Ltd., UK

WEARABLE PATCH-TYPE DEVICE FOR BIO-INFORMATION MONITORING WITH POROUS MICRONEEDLE AND FLEXIBLE AG/AGCL REFERENCE ELECTRODE
Ryohei Takizawa, Yuina Abe, Bibek Raut, Hajime Konno, Natsumi Kimura, Shotaro Yoshida, Hiroya Abe, and Matsuhiko Nishizawa
Tohoku University, JAPAN
W5-524.c A BIOCHIP INTEGRATED WITH MICROELECTRODES FOR MONITORING OF PYOCYANIN IN THE FORMATION PROCESS OF BIOFILMS
Lulu Liu, Ling Li, Chuang Ge, and Yi Xu
Chongqing University, CHINA

W5-525.c CARBON DOT-CONJUGATED-NAPHTHALIMIDE BASED RATIOMETRIC FLUORESCENCE PROBE FOR HYALURONIDASE DETECTION
Pushap Raj and Tae Yoon Lee
Chungnam National University, KOREA

W5-526.c HYBRID WEARABLE TECHNOLOGY FOR SWEAT BIOMONITORING
Meritxell Rovira1, César Fernández-Sánchez1, Silvia Demuru2, Rubaiyet Haque2, Danick Briand2, and Cecilia Jimenez-Jorquera1
1Instituto de Microelectrónica de Barcelona (IMB-CNM), SPAIN and
2École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5-527.c OPEN CHANNEL SWEAT VIA FOR LONG-TERM MONITORING OF SWEAT RATE AND CONCENTRATION
Jina Choi1, Sangha Kim1, Sunho Kim2, Hyunjung Yi2, and Rhokyun Kwak1
1Hanyang University, KOREA and 2Korea Institute of Science and Technology (KIST), KOREA

W6-624.c A DIFFERENTIAL MODE EXTENDED GATE FIELD EFFECT TRANSISTOR PH SENSOR BASED ON Al2O3 THICKNESS DEPENDENT SENSITIVITY
Qi Cheng, Qiancheng Zhao, Chengchen Gao, Yilong Hao, and Zhenchuan Yang
Peking University, CHINA

W6-625.c DIFFERENTIAL PHOTOELECTROCHEMICAL DNA SENSING BY MODULATING THE PLASMONIC PROPERTIES OF METAL NANOPARTICLES
Sudip Saha, Amanda Victorious, and Leyla Soleymani
McMaster University, CANADA

W6-626.c HYDROGEL-BASED TRANSPARENT SUBLURAL ELECTRODE WITH IONIC CONNECTION
Ayaka Nishimura, Ryota Suwabe, Yuka Ogihara, Yuina Abe, Hiroya Abe, Shotaro Yoshida, and Matsuhiko Nishizawa
Tohoku University, JAPAN

W6-627.c OXYGEN METABOLISM ANALYSIS OF A VASCULARIZED SPHEROID USING A SCANNING ELECTROCHEMICAL MICROSCOPY
Yuji Nashimoto1, Rei Mukomoto1, Takato Terai1, Kosuke Ino1, Koichi Nishiyama2, Ryuji Yokokawa3, Takahsi Miura4, and Hitoshi Shiku1
1Tohoku University, JAPAN, 2Kumamoto University, JAPAN, 3Kyoto University, JAPAN, and 4Kyushu University, JAPAN

Th7-724.c A DUAL-READOUT PAPER-BASED SENSOR FOR ON-SITE DETECTION OF PENICILLINASE WITH A SMARTPHONE
Jia Xu and Li Yang
Northeast Normal University, CHINA

Th7-725.c EFFECT OF MEMBRANE ELECTRODE VIBRATION ON MASS TRANSFER FOR ELECTROCHEMICAL MICRO SENSORS
Tianyi Zhang, Peng Zhou, Terrence Simon, and Tianhong Cui
University of Minnesota, USA
Th7-726.c LABEL-FREE IMPEDIMETRIC SENSING OF CORTISOL IN HUMAN SERUM BASED ON NANOWELL ARRAY ELECTRODES
Seyed Reza Mahmoodi1, Pengfei Xie1, Daniel P. Zachs2, Erik J. Peterson2, Hubert H. Lim2, Mark Allen3, and Mehdi Javanmard1
1Rutgers University, USA, 2University of Minnesota, USA, and 3University of Pennsylvania, USA

Th7-727.c POINT-OF-CARE MICROANALYZER FOR POTENTIOMETRIC DETERMINATION OF AMMONIUM IN PLASMA
Beatriz Rebollo-Cañal1, Antonio Calvo-Lopez1, Aida Ormazabal2, Mar Puyol1, Rafael Artuch2, and Julian Alonso-Chamarro1
1Autonomous University of Barcelona, SPAIN and 2Sant Joan de Déu Hospital, SPAIN

Th8-824.c A NON-ENZYMATIC ELECTROCHEMICAL SENSOR USING WRINKLED GOLD FILM ON SHRINK POLYMER
Xiaomeng Bian1 and Tianhong Cui2
1Tsinghua University, CHINA and 2University of Minnesota, USA

Th8-825.c ELECTROCHEMICAL DETERMINATION OF MANGANESE IN WHOLE BLOOD
Zhizhen Wu and Ian Papautsky
University of Illinois, Chicago, USA

Th8-826.c MULTIPLEX SENSOR FOR ION SENSING BASED ON PRINTED CIRCUIT BOARD
Zhehao Zhang and Ian Papautsky
University of Illinois, Chicago, USA

Th8-827.c POWER-FREE AUTOMATED CAPILLARY FLOW ASSAY FOR SARS-COV-2 DETECTION
Jeremy Link1, Cody Carrell1, Ilhoon Jang1,2, Yosita Panraksa1,3, Ana Sánchez-Cano1,4, Zachary Call1, Eka Noviana1, David S. Dandy1, Brian J. Geiss1, and Charles S. Henry1
1Colorado State University, USA, 2Hanyang University, KOREA, 3Chulalongkorn University, THAILAND, and 4Universitat Autònoma de Barcelona (UAB), SPAIN

\textbf{c - Sensors and Detection Technologies}

\textbf{Optical Sensors & Imaging}

M1-130.c DNA SEQENCING USING RGB SENSOR OF CONSUMER DIGITAL CAMERA
Takashi Anazawa1, Motohiro Yamazaki2, Shuhei Yamamoto2, and Ryoji Inaba2
1Hitachi, Ltd., JAPAN and 2Hitachi High-Tech Corporation, JAPAN

M1-131.c REAL-TIME STRAIN MEASUREMENT OF PIEZOELECTRICALLY ACTUATED POLYDIMETHYLSILOXANE (PDMS) BAR USING FIBRE BRAGG GRATING SENSOR FOR BIOMEDICAL APPLICATIONS
Rahul Kumar1, Bruno Rente1, Souvik Ghosh1, Christabel Tan2, Tong Sun1, and Kenneth Grattan1
1City University of London, UK and 2University of Hertfordshire, UK

M2-230.c REAL-TIME TRACKING OF PARTICLES AT >1,200 EVENTS PER SECOND USING GPU-ACCELERATED IMAGE PROCESSING
Arpith Vedhanayagam and Amar S. Basu
Wayne State University, USA

T3-329.c FABRICATION AND CHARACTERIZATION OF AXIAL VIEW LIQUID ELECTRODE PLASMA
Yueh-Han Huang1, Daisuke Hirose2, Meng-Jiy Wang1, and Yuzuru Takamura2
1National Taiwan University of Science and Technology, TAIWAN and 2Japan Advanced Institute of Science and Technology, JAPAN
REFERENCE PH MICROSENSR FOR FLUORESCENCE MEASUREMENT IN CELL CULTURE ENVIRONMENT WITHOUT INITIAL PH INFORMATION
Hisataka Maruyama\(^1\) and Fumihito Arai\(^2\)
\(^1\)Nagoya University, JAPAN and \(^2\)University of Tokyo, JAPAN

HIGH RESOLUTION PATTERNING OF HYDROGEL SENSING MOTIFS WITHIN FIBROUS SUBSTRATES FOR HIGHLY SENSITIVE AND MULTIPLEXED DETECTION OF NUCLEIC ACID BIOMARKERS
Dana Al Sulaiman, Sarah J. Shapiro, Jose Gomez-Marquez, and Patrick S. Doyle
Massachusetts Institute of Technology, USA

SOLVENT-ENHANCED PHOTOTHERMAL MOLECULE DETECTION METHOD FOR NANOFUIDICS AND ITS APPLICATION TO FEMTOLITER NORMAL-PHASE CHROMATOGRAPHY
Yoshiyuki Tsuyama, Kyojiro Morikawa, and Kazuma Mawatari
University of Tokyo, JAPAN

A MODULAR SMARTPHONE-ENABLED PLATFORM TO DETECT NUCLEIC ACID TARGETS BASED ON QUANTIFICATION OF COALESCED LAMP PRECIPITATE
Manaswini Masetty, Joseph Sepate, Sanghyun Do, and Aashish Priye
University of Cincinnati, USA

INTEGRATED MICROFLUIDIC SERS CHIP FOR THE CAPTURE AND DETECTION OF PATHOGENIC BACTERIA IN THE AIR
Xi Su, Rui Ren, Shifang Li, Li Chen, and Yi Xu
Chongqing University, CHINA

SPATIOTEMPORAL MAPPING OF A HYPOXIA-FFA SYNERGY ON BETA CELL CALCIUM OSCILLATIONS
Kai Duan and Joe Fujiou Lo
University of Michigan, Dearborn, USA

ACHIEVING SUB-MICROMETER IMAGING RESOLUTION IN PDMS SOFT LITHOGRAPHY DEVICES USING MODIFIED INVERTED SELECTIVE PLANE ILLUMINATION MICROSCOPY
Tienan Xu\(^1\), Yean Jin Lim\(^1\), Yujie Zheng\(^1\), Moon Sun Jung\(^2\), Katharina Gaus\(^2\), Elizabeth E. Gardiner\(^1\), and Woei Ming Lee\(^1\)
\(^1\)Australian National University, AUSTRALIA and \(^2\)University of New South Wales, AUSTRALIA

LOW-COST AND PORTABLE PHOTONIC IMMUNO-SENSOR BASED ON GUIDED MODE RESONANCE
Alexander Drayton, Kezheng Li, Matthew Simmons, Christopher Reardon, and Thomas F. Krauss
University of York, UK

ULTRASENSITIVE PLASMONIC SENSORS ON OPTICAL FIBERS END-FACE
Alba Calatayud-Sanchez\(^1\), Angel Ortega-Gomez\(^1\), Javier Barroso\(^1\), Joseba Zubia\(^1\), Fernando Benito-Lopez\(^1\), Joel Villatoro\(^1,2\), and Lourdes Basabe-Desmonts\(^1,2\)
\(^1\)University of the Basque Country, SPAIN and \(^2\)Basque Foundation of Science, IKERBASQUE, SPAIN

DETECTION OF HYDROGEN SULPHIDE IN HUMAN BLOOD PLASMA ON A MICROFLUIDIC PLATFORM
Ravindra Gaikwad, Karunya Ramsamy, and Ashis K. Sen
Indian Institute of Technology, Madras, INDIA
Th7-729.c METAL ION ENRICHMENT USING ORGANIC NANOCRYSTAL COATED-MICROFLUIDIC PAPER ANALYTICAL DEVICES TO ACHIEVE HIGHLY SENSITIVE COLORIMETRIC DETECTION
Grasianto, Mao Fukuyama, Derrick Mott, Yoshitaka Koseki, Hitoshi Kasai, and Akihide Hibara
Tohoku University, JAPAN

Th8-828.c DEVELOPMENT OF A SCANNING PIV TECHNIQUE FOR 3D CHARACTERIZATION OF FLOWS IN MICROCHANNELS
Quentin Galand, Pierre Gelin, Ketki Srivastava, David Blinder, Peter Schelkens, and Wim De Malsche
Vrije Universiteit Brussel, BELGIUM

Th8-829.c RAPID IDENTIFICATION OF HCC SERUM BASED ON MICROFLUIDIC SERS CHIP
Xinyu He, Chuang Ge, Li Chen, and Yi Xu
Chongqing University, CHINA

Sensors and Detection Technologies

M1-132.c FLEXIBLE POLYOLEFIN-BASED DOPAMINE SENSOR WITH HIGH SELECTIVITY
Wenzheng He¹, Ruitao Liu², Peng Zhou², Qingyuan Liu¹, Tianhong Cui²
¹Tsinghua University, CHINA and ²University of Minnesota, USA

M1-133.c WIRELESS AND BATTERY-FREE DIGESTIBLE SENSOR FOR INTESTINAL BACTERIA MONITORING
Ayaka Inami, Erika Iyama, Shun Itai, and Hiroaki Onoe
Keio University, JAPAN

M2-231.c GRADIENT ELUTION MOVING BOUNDARY ELECTROPHORESIS OF HOMEMADE FUEL-OXIDIZER EXPLOSIVES
Shannon T. Krauss¹, Dillon Jobes², and Thomas P. Forbes¹
¹National Institute of Standards and Technology (NIST), USA and ²Tulane University, USA

T3-331.c LOW-COST LOW-MOTION ARTIFACT ON-SKIN SENSOR-SYSTEM FOR PHYSIOLOGICAL SIGNAL RECORDING
Anan Zhang, Thalia Hua, Damian Redfearn, and S.K. Ameri
Queen's University, CANADA

T4-431.c PAPER MICROFLUIDICS DEVICE FOR LABEL-FREE DETECTION OF MESENCHYMAL STEM CELLS SECRETED VASCULAR ENDOTHELIAL GROWTH FACTOR
Enrique Azuaje Hualde¹, Marian Martínez de Pancorbo¹, Fernando Benito Lopez¹, and Lourdes Basabe-Desmonts¹,²
¹University of the Basque Country, SPAIN and ²Basque Foundation of Science, IKERBASQUE, SPAIN

W5-531.c PLGA POROUS MICRONEEDLES FOR INTERSTITIAL FLUID COLLECTION AIMED FOR CONTINUOUS GLUCOSE SENSING
Gwenaël Bonfante, Hakjae Lee, Leilei Bao, Nobuyuki Takama, and Beomjoon Kim
University of Tokyo, JAPAN

W6-631.c RAPID LABEL-FREE DNA QUANTIFICATION BY MULTI-FREQUENCY IMPEDANCE SENSING ON A CHIP
Jianye Sui¹, Neeru Gandotra², Curt Scharfe², and Mehdi Javanmard¹
¹Rutgers University, USA and ²Yale University, USA
AN ULTRASENSITIVE SURFACE ACOUSTIC WAVE SENSOR BASED ON Ti3C2Tx/Au NPS COMPOSITE FOR THE DETECTION OF ENDOTOXIN
Xiao Li Wang, Chuang Ge, Li Chen, and Yi Xu
Chongqing University, CHINA

SHAKE IT OR SHRINK IT: MASS TRANSPORT AND KINETICS IN SURFACE BIOASSAYS USING AGITATION AND MICROFLUIDICS
Anna Fomitcheva Khartchenko, Iago Pereiro, and Govind V. Kaigala
IBM Research - Europe, SWITZERLAND

DETECTION OF PROTEOFORMS FROM SINGLE CELLS BY MULTIPLEXED ION BEAM IMAGING
Gabriela Lomeli1, Marc Bosse2, Sean Bendall2, Michael Angelo2, and Amy E. Herr3
1UC Berkeley – UCSF Graduate Program in Bioengineering, USA,
2University of California, Berkeley, USA, and 3Stanford University, USA

STIMULI-RESPONSIVE HYDROGELS EMBEDDING MECHANICAL METAMATERIALS FOR HIGH SENSITIVE BIOCHEMICAL SENSORS
Shota Yamawaki, Mio Tsuchiya, and Hiroaki Onoe
Keio University, JAPAN

NOVEL IMAGING BASED HIGH-SPEED, HIGH-THROUGHPUT ANALYSIS AND CONTROL SYSTEM FOR MICROFLUIDICS
Daniel Geiger1, Jonas Pfeil1, Tobias Neckermuss1, Lisa Kwapič2, Patricia Schwilling2, and Othmar Marti2
1Sensific GmbH, GERMANY and 2University of Ulm, GERMANY

FAST ELECTRICAL IMPEDANCE SPECTROSCOPY FOR CELL CHARACTERIZATION AND COUNTING
Meng Li
Zurich Instruments AG, SWITZERLAND

PARALLELIZED FLOW CYTOMETRY REALIZED BY ARRAY OF TIME-GATED SINGLE PHOTON AVALANCHE DIODES
Camille Trzeciakowski1, Daiki Sato2, Takahiro Shindo2, Takeshi Mitsunaka2, Yoshihisa Fujimoto2, Kunihiko Iizuka2, Saori Tago1, Teruo Fujii1, and Soo Hyeon Kim1,3
1University of Tokyo, JAPAN, 2Sharp Corporation, JAPAN, and 3Japan Science and Technology Agency (JST), JAPAN

PHOTONIC SENSOR TO DETECT OF SARS-COV-2
Binh T.T. Nguyen1, Zhenyu Li1, Yuzhi Shi1, Patricia Y. Liu1, Hongwei Zhao2, Xiaohong Zhou1, Eric P.H. Yap1, and Ai Qun Liu1
1Nanyang Technological University, SINGAPORE, 2Hainan University, CHINA, and 3Tsinghua University, CHINA

ELECTROCHEMICAL DNA SENSING ENHANCED BY ELECTRIC FIELD USING CRISPR-CAS12A
Ziyue Li1,2, Xiong Ding1, Kun Yin1, and Changchun Liu1
1University of Connecticut Health Center, USA and 2University of Connecticut, USA
RAPID ANTIFUNGAL SUSCEPTIBILITY TESTING ON SILICON MICROWELLS
Christopher Heuer1,2, Heidi Leonard1, Nadav Nitzan1, Ariella Lavy-Alperovitch1, Naama Massad-Ivanir1, Janina Bahnemann2, Thomas Scheper2, and Ester Segal1
1Technion - Israel Institute of Technology, ISRAEL and 2Leibniz University Hannover, GERMANY

AN IMPROVED ACETYLCHOLINESTERASE INHIBITION ASSAY UTILIZING ORGANIC SOLVENT EXTRACTION FOR FOOD ANALYSIS
Lili Jin1, Zhenxia Hao1,2, Qingin Zhang1, Hongping Chen1,2, and Chengxin Lu1,2
1Chinese Academy of Agricultural Sciences, CHINA and 2Ministry of Agriculture and Rural Affairs, CHINA

FLEXIBLE DOPAMINE SENSOR WITH ELECTROPHORETIC DEPOSITED GRAPHENE OXIDE/PEDOT:PSS COMPOSITE FOR BRAIN DISORDER MONITORING
Seung Hyeon Ko1,2, Seung Wook Kim2, and Yi Jae Lee1
1Korea Institute of Science and Technology (KIST), KOREA and 2Korea University, KOREA

ANALYSIS OF ELECTRICAL PROPERTIES OF THE CELLS USING ELECTROROTATION AND LENS-FREE IMAGE DETECTION
Camila D.M. Campos1,2, Yuqian Li1, Ziduo Lin1, Geert Vanmeerbeeck1, Pawel Barmuta2,3, Tomislav Markovic1,2, Rahul Yadav1,2, Giovanni Mangraviti1, Willem Van Roy1, Ilja Ocket1, Yao Hong Liu1, Tim Stakenborg2, Richard Stahl1, Liesbet Lagae1,2, Jan Genoe1,2, and Chengxun Liu1
1Imec, BELGIUM, 2KU Leuven, BELGIUM, and 3Warsaw University of Technology, POLAND

MICROFLUIDIC CHIP FOR THE ELECTROCHEMICAL DETECTION OF MICRORNAs: STUDY OF THE SPECIFICITY
Claire Poujouly1, Pedro Gonzalez Losada1, Sébastien Banzet2, and Jean Gamby1
1Université Paris-Saclay, FRANCE and 2Institut de Recherche Biomédicale des Armées, FRANCE

A MINIATURE ON-CHIP MICROSCOPE
Ekta Prajapati and Shishir Kumar
Indian Institute of Technology, Hyderabad, INDIA

CAN WE MAKE POROUS SILICON BIOSENSORS MORE SENSITIVE? MODELING AND LIMITATIONS
Sofia Arshavsky-Graham1,2, Evgeniy Boyko1, Rachel Salama1, and Ester Segal1
Technion-Israel Institute of Technology, ISRAEL

INTEGRATION OF PLASMONICS AND ELECTRONICS FOR DYNAMIC TRAPPING AND SENSING OF BIOMOLECULES
Daehan Yoo1, Avijit Barik1, Fernando de Léon-Pérez2,3, Daniel A. Mohr1, Matthew Pelton4, Luis Martín-Moreno3, and Sang-Hyun Oh1
1University of Minnesota, Minneapolis, USA, 2Centro Universitario de la Defensa de Zaragoza, SPAIN, 3Universidad de Zaragoza, SPAIN, and 4University of Maryland, Baltimore County, USA

MIXED-SCALE FLUIDIC SYSTEM FOR POINT-OF-CARE TESTING
Steven A. Soper1, Michael C. Murphy2, and Sunggook Park3
1University of Kansas, USA and 2Louisiana State University, USA

3D PRINTING FOR ENHANCED FABRICATION OF MICROFLUIDIC FREE-FLOW ELECTROPHORESIS
John-Alexander Preuss and Janina Bahnemann
Leibniz Universität, Hannover, GERMANY
OVERCOMING MASS TRANSFER LIMITATIONS BY INTRODUCING VORTEX CHROMATOGRAPHY
Eiko Y. Westerbeek1,2, Guillermo Gonzalez Amaya1, Wouter Olthuis2, Jan C.T. Eijkel2, and Wim de Malsche1
1Vrije Universiteit Brussel, BELGIUM and 2University of Twente, THE NETHERLANDS

A MEDIUM THROUGHPUT SYSTEM FOR MEASUREMENT OF ISLET SECRETIONS
Yao Wang, Weijia Leng, and Michael G. Roper
Florida State University, USA

SUMMIT: A SEMI-AUTOMATED PROTEIN PEAK QUANTIFICATION ALGORITHM FOR HIGH-THROUGHPUT SINGLE-CELL ELECTROPHORESIS
Julea Vlassakis1, Kevin A. Yamauchi1,2, and Amy E. Herr1
1University of California, Berkeley, USA and
2Friedrich Miescher Institute for Biomedical Research, SWITZERLAND

A MICROFLUIDIC IN-SITU SAMPLING PROBE INTEGRATED WITH LIQUID CHROMATOGRAPHIC SEPARATION CAPACITY FOR MASS SPECTROMETRY ANALYSIS
Di-Qiong Jin, Shao-Wen Shi, Yan Ma, and Qun Fang
Zhejiang University, CHINA

A MONOLITHIC 3D PRINTED µFFE DEVICE WITH INTEGRATED SWAB RECEPTACLE FOR ENRICHMENT OF MULTIDRUG-RESISTANT PATHOGENS
Christian Neubert1, Ole Behrmann1, Denny Maaz2, Frank T. Hufert1, and Gregory Dame1
1Brandenburg Medical School Theodor Fontane, GERMANY and
2German Federal Institute for Risk Assessment, GERMANY

DETECTING CELL DEATH BY ELECTROPHORETIC CYTOMETRY
Ana E. Gomez Martinez and Amy E. Herr
University of California, Berkeley, USA

DEVELOPMENT OF A NOVEL MICROFLUIDIC APPROACH FOR RAPID AND CONTINUOUS DETECTION OF PATHOGENS IN FOOD AND WATER SAMPLES
Gurpreet Klar, Crystal M. Han, and Liat Rosenfeld
San Jose State University, USA

INTEGRATED SAMPLE PREPARATION FOR HIV MOLECULAR TESTING IN A PAPER-BASED DEVICE
Andrew T. Bender1, Benjamin P. Sullivan1, Jane Y. Zhang1, Lorraine Lillis2, David S. Boyle2, and Jonathan D. Posner1
1University of Washington, USA and 2PATH, USA

HIGH THROUGHPUT EXTRACELLULAR VESICLE SORTING USING ELECTROKINETIC DETERMINISTIC LATERAL DISPLACEMENT
Bao D. Ho, Jason P. Beech, and Jonas O. Tegenfeldt
Lund University, SWEDEN

PARTICLE MANIPULATION USING PROGRAMMABLE HYDRODYNAMIC FORCES
Ankur Kislaya, Daniel S.W. Tam, and Jerry Westerweel
Delft University of Technology, THE NETHERLANDS
M2-234.d HIGH THROUGHPUT ISOLATION OF SMALL EXTRACELLULAR VESICLES FROM WHOLE BLOOD USING MULTIPLEXED SPIRAL MICROFLUIDICS (ExoDFFHT)
Sheng Yuan Leong1, Hui Min Tay1, Megha Upadya1, Fang Kong1, Rinkoo Dalan2, Dao Ming1,3, and Han Wei Hou1
1Nanyang Technological University, SINGAPORE, 2Tan Tock Seng Hospital, SINGAPORE, and 3Massachusetts Institute of Technology, USA

M2-235.d POROUS PDMS SUBSTRATE-ASSISTED PARTICLE SORTING BASED ON HYDRODYNAMIC CROSS-FLOW MICROFLUIDIC FILTRATION
Yurika Sakurai, Takeru Sato, Masumi Yamada, and Minoru Seki
Chiba University, JAPAN

T3-335.d HIGH-THROUGHPUT CONTINUOUS INERTIAL FOCUSING OF MICROALGAE IN ASYMMETRIC SERPENTINE CHANNELS
Mohammad Al-Hurani, Rodney Forster, Nicole Pamme, and Alex Iles
University of Hull, UK

T3-336.d SCALING OF DLD DEVICES FOR CELL FRACTIONATION DOWN TO A SINGLE COLUMN FOR ULTRAHIGH THROUGHPUT PER AREA
Weibin Liang, Robert H. Austin, and James C. Sturm
Princeton University, USA

T4-434.d DETERMINISTIC LATERAL DISPLACEMENT OCCURS WITHOUT CONTACT AT INERTIAL FLOW RATES
William J. Monck1, Calum P. Mallorie2, Rohan R. Vernekar2, Timm Krüger2, and David W. Inglis1
1Macquarie University, AUSTRALIA and 2University of Edinburgh, UK

T4-435.d MANIPULATION OF BIOMOLECULES USING A 3D-PRINTED INSULATOR-BASED DIELECTROPHORESIS DEVICE
Mohammad Towshif Rabbani, Mukul Sonker, Jorvani Cruz Villarreal, and Alexandra Ros
Arizona State University, USA

T4-436.d SHAPE BASED CHROMOSOME SEPARATION IN THE INERTIAL FOCUSING DEVICE
Haidong Feng, Bruce Gale, Himanshu Sant
University of Utah, USA

W5-533.d DETERMINISTIC LATERAL DISPLACEMENT SYSTEMS WITH ARRAYED THREE-DIMENSIONAL ELECTRODES FOR TUNABLE PARTICLE SORTING
Gloria Porro1, Kevin Keim1, Giovanni Cappai1, Jason P. Beech2, Jonas O. Tegenfeldt2, and Carlotta Guiducci1
1École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and 2Lund University, SWEDEN

W5-534.d OPERATING SPIRAL INERTIAL MICROFLUIDICS AT CONCENTRATIONS UP TO 3.4X109 CELLS/ML FOR HIGH-CONCENTRATION DEWATERING OF CHLORELLA VULGARIS
Catherine Hill, Nik Willoughby, and Helen Bridle
Heriot-Watt University, UK

W5-535.d STREAM BIFURCATION INDUCED BLOOD CELL SEPARATION IN SEMI-DILUTED VISCOELASTIC FLOW
Haidong Feng, Jules Magda, and Bruce K. Gale
University of Utah, USA

W6-633.d DEVELOPING MICROFLUIDIC DEVICES AND TECHNIQUES FOR ISOLATION AND DETECTION OF EXTRACELLULAR VESICLES (EVS)
Himayasri Rao Lekkala1, Ian Johnston1, Nikolay Dimov1, and Jameel Inal2,3
1University of Hertfordshire, UK, 2School of Life and Medical Sciences, UK, and 3London Metropolitan University, UK
W6-634.d PAPER-BASED PUMP-FREE MAGNETOPHORESIS
Zachary D. Call, Cody S. Carrell, Ilhoon Jang, Brian J. Geiss, David S. Dandy, and Charles S. Henry
Colorado State University, USA

W6-635.d UPSCALING OF DIELECTROPHORETIC CONTINUOUS-FLOW DNA SEPARATION IN A
MICROFLUIDIC SYSTEM
Jakob Derksen, Dario Anselmetti, and Martina Viefhues
Bielefeld University, GERMANY

Th7-733.d FLOW FIELD-ASSISTED MICROFLUIDIC CHIP FOR THE SHEATHLESS SEPARATION OF
MICROPARTICLES AND CELLS
Shitao Shen1, Mingliang Jin1, Zichuan Yi1, Xing Li1, Zhibin Yan1, Guofu Zhou1, and Lingling Shui1,2
1South China Normal University, CHINA and
2University of Electronic Science and Technology of China, CHINA

Th7-734.d PARTICLE AND PATHOGEN FOCUSING AND PRE-ENRICHMENT IN ASYMMETRICALLY
curved winding channels via inertial microfluidics
Pablo Rodriguez-Mateos, Charlotte E. Dyer, Alexander Iles, and Nicole Pamme
University of Hull, UK

Th8-833.d HIGH THROUGHPUT CLOGGING-FREE MICROFLUIDIC PARTICLE FILTER BY
FEMTOSECOND LASER MICROMACHINING
Filippo Storti1,2, Silvio Bonfadini1, and Luigino Criante1
1Istituto Italiano di Tecnologia, ITALY and 2Politecnico di Milano, ITALY

Th8-834.d PARTICLE MIGRATION IN SHEAR THINNING VISCOELASTIC FLUID
Shamik Hazra1, Sushanta K. Mitra2, and Ashis Kumar Sen1
1Indian Institute of Technology, Madras, INDIA and 2University of Waterloo, CANADA

d - Integrated Microfluidic Platforms
Micromixers & Microreactors

M1-137.d HIGH-THROUGHPUT 3D GLASS MICROMIXER WITH AN IMPELLER MONOLITHICALLY
FABRICATED USING SELECTIVE LASER-INDUCED ETCHING (SLE)
Sungil Kim1,2, Jeongtae Kim1, Yeun-Ho Joung1, Sanghoon Ahn2, Jiyeon Choi2, and Chiwan Koo1
1Hanbat National University, KOREA and 2Korea Institute of Machinery and Materials (KIMM), KOREA

M2-236.d STUDY OF LIQUID PHASE OXIDATIVE DEGRADATION OF LIGNIN IN MICROFLUIDIC AND
BATCH REACTOR
Niloofar Manafi and Neda Nazemifard
University of Alberta, CANADA

T3-337.d THE INFLUENCE OF SHEAR ON THE POLYMORPHISM OF ROY UNDER CONSTANT SHEAR
CONDITIONS
Sander Stroobants, Marzena Krezcket, Pierre Gelin, Iwona Ziemecka, Yousef Pourvais, Heidi Ottevaere,
Wim De Malsche, and Dominique Maes
Vrije Universiteit Brussel, BELGIUM

T4-437.d THERMAL MANIPULATION FOR A SINGLE CELL UTILIZING AREA COOLING
Yigang Shen1,2, Yaxiaer Yalikun1,2, Yusufu Aishan1,2, and Yo Tanaka1,2
1RIKEN, JAPAN, 2Osaka University, JAPAN, and 3Nava Institute of Science and Technology, JAPAN

Th7-735.d DEVELOPMENT OF A PILLAR ARRAY MIXER FOR POST-COLUMN DERIVATIZATION ON A
CHIP
Makoto Tsunoda, Muneki Isokawa, and Takashi Funatsu
University of Tokyo, JAPAN
ENHANCEMENT OF PHOTOCATALYTIC REACTION ASSISTED BY NANOELECTROKINETICS
Cong Wang and Jungyul Park
Sogang University, KOREA

d - Integrated Microfluidic Platforms

Chemical & Particle Synthesis

M1-138.d
PHOTOCHEMISTRY IN AN ASSEMBLY OF 108 MICROMETRIC CAPILARIES (id 3.65µm) GRAFTED WITH A PHOTOSENSITIZER
Christian Rolando, Fabien Gelat, Christophe Penverne, Maël Penhoat, Géraud Bouwmans, and Laëtitia Chausset-Boissarie
Université de Lille, FRANCE

W5-536.d
A BOLT-NUT MICREOREACTOR FOR THE SYNTHESIS OF CuInS₂/ZnS QUANTUM DOTS
Hyunbin Kim and Do Hyun Kim
Korea Advanced Institute of Science and Technology (KAIST), KOREA

W6-636.d
A CONTINUOUS PLATFORM FOR EMBEDDED DROPLET PRINTING OF PHARMACEUTICAL PARTICLES
Arif Z. Nelson¹, Jiaxun Xie², Saif A. Khan³, and Patrick S. Doyle³
¹Singapore-MIT Alliance for Research and Technology (SMART) Centre, SINGAPORE,
²National University of Singapore, SINGAPORE, and ³Massachusetts Institute of Technology, USA

Th7-736.d
CHEMOENZYMATIC MICROFLUIDIC CASCADE REACTION: COUPLING OF A DIELS-ALDER REACTION WITH A TRANSKETOLASE-CATALYZED REACTION
Mariana Santos¹, Brian O'Sullivan¹, Sarah Müller², Alina Bunescu², Frank Baganz¹, Marco P.C. Marques¹, Helen Hailes¹, Nicolas Szita¹, and Roland Wohlgemuth³
¹University College London, UK, ²Sigma-Aldrich, GERMANY, and ³Technical University, Lodz, GERMANY

Th8-836.d
DEVELOPMENT OF SYNTHESIS ROUTES TO HUMAN DRUG METABOLITES USING IMMOBILISED ENZYMATIC REACTIONS WITHIN MICROFLUIDIC REACTORS
Bradley Doyle¹, Leigh A. Madden¹, Nicole Pamme¹, and Huw S. Jones²
¹University of Hull, UK and ²University of Bradford, UK

d - Integrated Microfluidic Platforms

Other Applications in Chemistry

M1-139.d
DEVELOPMENT OF AN OPTIC MICRO-RHEOMETER USING MULTILAYER PMMA CARTRIDGES AND MODULAR POLYMERIC MICROPUMPS
Yara Alvarez-Braña¹, Josep Ferre-Torres², Andreu Benavent-Claro², Francisco Palacio-Bonet², Fernando Benito-Lopez¹, Mauricio Moreno-Sereno², Aurora Hernandez-Machado², and Lourdes Basabe-Desmonts¹,³
¹University of the Basque Country, SPAIN, ²University of Barcelona, SPAIN, and ³Basque Foundation of Science, IKERBASQUE, SPAIN

M2-237.d
A DEVICE FOR URINE CELL CONCENTRATION, LYSIS AND NUCLEIC ACID AMPLIFICATION FOR CHLAMYDIA DETECTION AT THE POINT OF CARE
Steven Bennett, Sujatha Kumar, Erin Heiniger, and Paul Yager
University of Washington, USA

M2-238.d
HYBRID MONOLITHS SUPPORTED ON FDM-BASED 3D-PRINTED SCAFFOLDS
Marcella E.P. Schmidt, Lucas P. Bressan, José A.F. da Silva, and Carla B.G. Bottoli
State University of Campinas, BRAZIL
A DISPOSABLE INTEGRATED DIAGNOSTIC DEVICE FOR BLOOD ACQUISITION, SAMPLE PROCESSING, LYSIS, AND DETECTION OF EBOLA VIRUS MARKERS
Sujatha Kumar, Steven Bennett, Shichu Huang, Joshua Buser, and Paul Yager
University of Washington, USA

PRE-CONCENTRATION WITH ELECTROSPUN MEMBRANES COUPLED WITH PAPER-BASED ASSAYS TOWARDS ONSITE MONITORING OF HEAVY METALS IN WATER
Bongkot Ngamsom, Samantha Richardson, Mila Sari, Alexander Iles, Mark Lorch, Will M. Mayes, and Nicole Pamme
University of Hull, UK

A MONOLITHIC WEARABLE SYSTEM DESIGN METHODOLOGY FOR PHYSIOLOGICAL ACTUATION AND ELECTROCHEMICAL SENSING
Hannaneh Hojaiji, Yichao Zhao, Max C. Gong, Mudith Mallajosyula, Amir M. Hojaiji, Asad M. Madni, and Sam Emaminejad
University of California, Los Angeles, USA

ACCELERATED MICROFLUIDIC STUDIES OF SWITCHABLE HYDROPHILICITY SOLVENTS
Suyong Han, Mahdi Ramezani, and Milad Abolhasani
North Carolina State University, USA

AMYLOID β ANALYSIS FROM MICRODISSECTED BRAIN CELLS USING MICROFLUIDICS AND MALDI MASS SPECTROMETRY
Jorvani Cruz Villarreal, Ana Egatz-Gomez, Jiawei Liu, Robert Ros, Paul D. Coleman, and Alexandra Ros
Arizona State University, USA

AN INTEGRATED CENTRIFUGAL DEGASSED PDMS-BASED MICROFLUIDIC DEVICE FOR SERIAL DILUTION
Anyang Wang, Samaneh Moghadasi Boroujeni, Stelios T. Andreadis, and Kwang W. Oh
University at Buffalo, USA

DEVELOPING THE FUTURE OF CLINICAL RADIOPHARMACY: OPTIMISING ON-CHIP GALLIUM-68 RADIOLABELLING FOR PET IMAGING
Vincent Nail, Mark D. Tarn, Ping He, Nicole Pamme, and Stephen J. Archibald
University of Hull, UK

d - Integrated Microfluidic Platforms

HOLIFAB: MICROFLUIDIC INTEGRATION PILOT LINE AND CAD SOFTWARE FOR COMMERCIALIZATION OF YOUR MICROFLUIDIC SET-UP
Nicolas Lafitte, Mikael Trellet, Ygor Oliveira, Benjamin Rouffet, Serge Renouard, and Jean-Louis Viovy
Holifab/Fluigent, FRANCE
e - Cells, Organisms and Organs on a Chip

Cell Capture, Counting, & Sorting

<table>
<thead>
<tr>
<th>Paper ID</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-140.e</td>
<td>FULLY-AUTOMATED AND FIELD-DEPLOYABLE BLOOD SEPARATION PLATFORM USING MULTIDIMENSIONAL DOUBLE SPIRAL (MDDS) INERTIAL MICROFLUIDICS</td>
<td>Hyungkook Jeon¹,2 and Jongyoon Han¹</td>
<td>Massachusetts Institute of Technology, USA and Pohang University of Science and Technology, KOREA</td>
</tr>
<tr>
<td>M1-141.e</td>
<td>PORTABLE PLATELET APHERESIS SYSTEM</td>
<td>Lap Man Lee, Ketan H. Bhatt, Dustin W. Haithcock, Balabhaskar Prabhakarpandian, and Kapil Pant</td>
<td>CFD Research Corporation, USA</td>
</tr>
<tr>
<td>M1-142.e</td>
<td>ULTRASENSITIVE DETECTION AND DEPLETION OF RARE LEUKEMIC B CELLS IN T CELL POPULATIONS VIA MICROFLUIDICS-MEDIATED IMMUNOMAGNETIC CELL RANKING</td>
<td>Zongjie Wang and Shana O. Kelley</td>
<td>University of Toronto, CANADA</td>
</tr>
<tr>
<td>M2-239.e</td>
<td>GENTLE TRAP-AND-RELEASE MECHANISM FOR MULTISTEP CELL PROCESSING USING PDMS SPONGE-INTEGRATING MICROFLUIDIC DEVICES</td>
<td>Natsumi Miura, Masumi Yamada, and Minoru Seki</td>
<td>Chiba University, JAPAN</td>
</tr>
<tr>
<td>M2-240.e</td>
<td>RARE CELLS ISOLATION ON SACA CHIP FOR AUTOMATIC CELLS ANALYSIS</td>
<td>Yi-Wen Hu¹, Ping-Hao Yeh¹, Hsin-Yao Wu¹, and Fan-Gang Tseng¹,²</td>
<td>National Tsing Hua University, TAIWAN and Academia Sinica, TAIWAN</td>
</tr>
<tr>
<td>T3-340.e</td>
<td>HIGH-THROUGHPUT LIVE CELL PRINTING SYSTEM USING NEAR INFRA-RED PULSE LASER</td>
<td>Amos Chungwon Lee, Wooseok Lee, Yongju Lee, Ahyoun Choi, Sudeok Kim, Kyoung Seob Shin, and Sungsoon Kwon</td>
<td>Seoul National University, KOREA</td>
</tr>
</tbody>
</table>
SAFELY SORTING AND ISOLATING RARE SPERM USING DIELECTROPHORESIS BY TRAPPING THE TAIL AND SIMULTANEOUSLY DISTANCING THE HEAD FROM STRONG ELECTRIC FIELDS
Sholom Shuchat¹, Ofer Fainaru², Shahar Kol³, and Gilad Yossifon¹
¹Technion – Israel Institute of Technology, ISRAEL, ²Rappaport Faculty of Medicine, ISRAEL, and ³Elisha Hospital, Haifa Israel, ISRAEL

A DROPLET-BASED DETECTION AND SORTING OF CELLS UTILIZING OPTOFLUIDICS AND ELECTRO-COALESCEENCE TECHNIQUE
Ravindra Gaikwad and Ashis K. Sen
Indian Institute of Technology, Madras, INDIA

HIGH-THROUGHPUT SINGLE-CELL QUANTIFICATION OF ELASTIC MODULUS
Ryan Dubay¹², Jason Fiering², and Eric M. Darling¹
¹Brown University, USA and ²Draper, USA

SELECTIVE RETRIEVAL OF INDIVIDUAL CELLS FROM MICROFLUIDIC ARRAYS COMBINING DIELECTROPHORETIC FORCE AND DIRECTED HYDRODYNAMIC FLOW
Pierre-Emmanuel Thiriet, Joern Pezoldt, Gabriele Gambardella, Kevin Keim, Bart Deplancke, and Carlotta Guiducci
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

CELL SORTING ACROSS LAMINAR INTERFACE USING STIFFNESS CONTRAST
Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹
¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA

LABEL-FREE SINGLE-CELL CAPTURE AND RELEASE VIA A FIRST-IN FIRST-OUT MICROFLUIDIC CELL ROUTER
Nathaniel Liu, Kristina Chan, and Lydia L. Sohn
University of California, Berkeley, USA

SINGLE CELL PER WELL TRAPPING AND ANALYSIS OF CHLAMYDOMONAS REINHARDTII USING SURFACE ACOUSTIC WAVES
Mingyang Cui, Philip V. Bayly, Susan K. Dutcher, and J. Mark Meacham
Washington University, St. Louis, USA

DEFORMABILITY BASED CELL SORTING AS A BIOMARKER FOR THE QUALITY OF STORED RED BLOOD CELLS
Emel Islamzada¹, Kerryn Matthews¹, Erik Lamoureux¹, Quan Guo¹, Aline T. Santosão¹, Mark D. Scott¹², and Hongshen Ma¹³
¹University of British Columbia, CANADA, ²Canadian Blood Services, CANADA, and ³Vancouver General Hospital, CANADA

MICROFLUIDIC MEDIUM EXCHANGER WITH MICROPORED FLUID DRAINAGE FOR CELL CULTURE APPLICATIONS
Takeru Sato, Yurika Sakurai, Masumi Yamada, and Minoru Seki
Chiba University, JAPAN

SPIRAL MICROFLUIDICS ENHANCED ISOLATION OF EPITHELIAL CELLS FROM INFECTED MICE URINE
Suhanya Duraiswamy¹, Lin Yue Lamry Yung², and Swaine L. Chen²
¹Indian Institute of Technology, Hyderabad, INDIA, ²National University of Singapore, SINGAPORE, and ³Genome Institute of Singapore, SINGAPORE
Th7-738.e FABRICATION OF CMOS-COMPATIBLE GRAPHENE MICROHALL SENSORS FOR MAGNETIC CYTOMETRY
Nishal Shah, Vasant Iyer, and David Issadore
University of Pennsylvania, USA

Th7-739.e MICROFLUIDIC TRAP ARRAYS FOR PROBING STOCHASTIC IMMUNE-TUMOR DYNAMICS
Michael C. Yeh¹ ², Emanuel Salazar Cavazos³, Supriya Padmanabhan¹, Grégoire Altan-Bonnet³, and Don L. DeVoe¹
¹University of Maryland, College Park, USA and ²National Cancer Institute, USA

Th7-740.e TECHNIQUE FOR PASSIVE DROPLET SORTING AFTER PHOTO-TAGGING
Chandler Dobson, Claudia Zielke, Ching Pan, Cameron Feit, and Paul Abhyad
Santa Clara University, USA
#poster will be presented during the M2 poster session on Monday

Th8-838.e FERTDISH: MICROFLUIDIC SPERM SELECTION-IN-A-DISH FOR ICSI
Sa Xiao¹, Jason Riordon¹, Alexander Lagunov², Tom Hannam², Reza Nosrati³, and David Sinton¹
¹University of Toronto, CANADA, ²Hannam Fertility Centre, CANADA, and ³Monash University, AUSTRALIA

Th8-839.e PAIRING CELLS WITH DIFFERENT DIMENSIONS IN A MICROFLUIDIC DEVICE USING A UNIDIRECTIONAL FLOW
Faruk A. Shaik¹, Clara Lewuillon¹ ², Yasmine Touil¹ ², Aurélie Guillemette¹ ², Bruno Quesnel¹ ², Carine Brinster¹ ², Loïc Lemonnier³, Dominique Collard³, and Mehmet C. Tarhan¹ ⁴
¹University of Lille, FRANCE, ²INSERM, FRANCE, ³University of Tokyo, FRANCE, and ⁴University Valenciennes, FRANCE

Th8-840.e THE EFFECT OF ELEVATED HEMATOCRIT ON HUMAN BLOOD FLOW IN A MICROCHANNEL
Md Ehtashamul Haque¹ ², Krystian Wlodarczyk¹, Duncan P. Hand¹, Miguel O. Bernabeu², and Maïwenn Kersaudy-Kerhoas¹ ²
¹Heriot Watt University, UK and ²Edinburgh University, UK

e - Cells, Organisms and Organs on a Chip
Single-Cell Analysis

M1-143.e LABEL-FREE ASSESSMENT OF CELL CYCLE SYNCHRONIZATION IN NEURAL PROGENITOR CELLS BY IMPEDANCE CYTOMETRY
Carlos Honrado, Nadine Michel, John H. Moore, Armita Salahi, Veronica Porterfield, Michael J. McConnell, and Nathan S. Swami
University of Virginia, USA

M1-144.e ELECTROROTATION FOR SINGLE CELL ANALYSIS OF MEMBRANE DAMAGE INDUCED BY TOXINS MIMICKING THE NEURODEGENERATIVE EFFECT OF AMYLOID BETA IN THE ALZHEIMER'S DISEASE
Till Ryser, Kevin Keim, Anne-Laure Mahul-Mellier, Hilal Lashuel, and Carlotta Guiducci
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

M1-145.e MICROFLUIDIC HANGING PILLARS ARRAYS FOR SINGLE-CELL ANALYSIS OF OSMOTIC SWELLING DYNAMICS AS PHYSICAL BIOMARKERS
Apresio K. Fajrial, Kun Liu, Yu Gao, and Xiaoyun Ding
University of Colorado, Boulder, USA
SPATIALLY RESOLVED GENOMICS FROM SINGLE CELLS WITH DISTINCT FLUORESCENT SIGNALS USING TRANSPOSASE-BASED DIRECT LIBRARY PREPARATION
Ahyoun Choi1, Amos Chungwon Lee1, Yongju Lee1, Jinyun Kim1, Kyung Seob Shin1, Dajeong Jeong2, Myoung Hee Ham2, Sung-Min Kim3, Okju Kim4, Yushin Jung4, Changhoe Kim4, Taehoon Ryu4, Dongsoon Lee2,3, and Sunghoon Kwon1
1Seoul National University, KOREA, 2Seoul National University Hospital, KOREA, 3Seoul National University College of Medicine, KOREA, and 4Celemics, Inc., KOREA

3D PROJECTION ELECTROPHORESIS FOR HIGH-DENSITY SINGLE-CELL IMMUNOBLOTTING
Samantha M. Grist, Andoni P. Mourdoukoutas, and Amy E. Herr
University of California, Berkeley, USA

BIOMECHANICAL MARKERS FOR MONITORING HETEROGENEITY IN ISLET REORGANIZATION DYNAMICS WITH ADIPOSE STEM CELLS
Karina Torres-Castro, Mohammad S. Azimi, Walter B. Varhue, Carlos Honrado, Shayn M. Pierce-Cottler, and Nathan S. Swami
University of Virginia, USA

HIGH-THROUGHPUT QUANTIFICATION OF SINGLE-CELL CORTICAL TENSION USING MULTIPLE CONSTRITION CHANNELS
Ke Wang1, Yan Liu2,3, Xiaohao Sun1, Deyong Chen2,3, Junbo Wang2,3, and Jian Chen2,3
1Beijing University of Posts and Telecommunications, CHINA, 2Chinese Academy of Sciences, CHINA, 3University of Chinese Academy of Sciences, CHINA, and 4University of Colorado Boulder, USA

MONITORING THE GROWTH PHASES OF MICROALGAE USING STRAIGHTFORWARD DIELECTROPHORESIS MEASUREMENTS
Yu-Sheng Lin1,2, Bruno Le Pioufle2, and Hsiang-Yu Wang1
1National Tsing Hua University, TAIWAN and 2Université Paris Saclay, FRANCE

SPATIALLY TARGETED WHOLE TRANSCRIPTOME ACCESSIBLE IN SITU SEQUENCING
Kyoungseob Shin2, Hower Lee1, Yongju Lee1, Ahyoun Choi2, Amos Chungwon Lee2, Narayanan Madaboosi1, Mats Nilsson1, and Sunghoon Kwon2
1Stockholm University, SWEDEN and 2Seoul National University, KOREA

A DUAL IMAGING SYSTEM FOR UNDERSTANDING MICROSWIMMER LOCOMOTION
Farzan Akbaridoust1,2, Ivan Marusic2, and Reza Nosrati1
1Monash University, AUSTRALIA and 2University of Melbourne, AUSTRALIA

CONSTRUCTION CHANNEL BASED MICROFLUIDIC SYSTEM OF QUANTIFYING SINGLE-CELL CYTOPLASMIC VISCOSITY, CYTOPLASMIC CONDUCTIVITY AND SPECIFIC MEMBRANE CAPACITANCE
Yan Liu1, Ke Wang2, Xiaohao Sun3, Deyong Chen1, Junbo Wang4, and Jian Chen1
1Chinese Academy of Sciences, CHINA, 2Beijing University of Posts and Telecommunications, CHINA, and 3University of Colorado Boulder, USA

IMPEDANCE CYTOMETRY OF APOPTOTIC BODIES TO QUANTIFY DRUG SENSITIVITY OF PANCREATIC TUMOR XENOGRAFTS
Carlos Honrado, John H. Moore, Sara J. Adair, Armita Salahi, Todd W. Bauer, and Nathan S. Swami
University of Virginia, USA

MULTIPLEXED RESISTIVE–PULSE SENSING THROUGH CODED NODE–PORE CHANNEL GEOMETRY
Kristen L. Cotner1 and Lydia L. Sohn1,2
1UC Berkeley – UCSF Graduate Program in Bioengineering, USA and 2University of California, Berkeley, USA
T3-346.e VIBRATIONAL FLOW CYTOMETRY ON A CHIP: A LABEL-FREE TOOL FOR METABOLIC PHENOTYPING
Julia Gala de Pablo1, Matthew Lindley1, Kotaro Hiramatsu1,2, Akihiro Isozaki1,2, and Keisuke Goda1,3,4
1University of Tokyo, JAPAN, 2Kanagawa Institute of Industrial Science and Technology, JAPAN, 3University of California, Los Angeles, USA, and 4Wuhan University, JAPAN

T4-442.e A GENETIC NETWORK FOR THE COMMUNICATION AND SYNCHRONIZATION OF NEUROSPORA CRASSA
Xiao Qiu, Jia Hwei Cheong, Heinz-Bernd Schütter, Jonathan Arnold, and Leidong Mao
University of Georgia, USA

T4-443.e DETECTING MULTIPLEX MUTATION IN SINGLE MELANOMA CELLS USING MOLECULAR BEACONS IN LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (MB-LAMP)
Darshna Pagariya, Marcelino Varona, Jared L. Anderson, and Robbyn K. Anand
Iowa State University, USA

T4-444.e MACHINE LEARNING-ENABLED HIGH-SPEED IMPEDANCE CYTOMETRY
Federica Caselli1, Adele De Ninno1,2, Riccardo Reale1, Luca Businaro2, and Paolo Bisegna1
1University of Rome Tor Vergata, ITALY and 2Italian National Research Council, ITALY

T4-445.e OCEAN CARBON CYCLE STUDIED BY SINGLE-CELL IMPEDANCE CYTOMETRY ON CALCIFYING ALGAE
Douwe S. de Bruijn1, Paul M. ter Braak1, Dedmer B. Van de Waal2, Wouter Olthuis1, and Albert van den Berg1
1University of Twente, THE NETHERLANDS and 2Netherlands Institute of Ecology (NIOO-KNAW), THE NETHERLANDS

W5-542.e A HIGH-THROUGHPUT MEMS DEVICE FOR MECHANICAL DETECTION OF CANCER CELLS
Quentin Rezard1,2, Grégoire Perret1,2, Jean Claude Gerbedoen1,2, Deniz Pekin3,4, Dominique Collard1,2, Chann Lagadec1,4, and Mehmet C. Tarhan1,2
1University of Lille, FRANCE, 2University of Valenciennes, FRANCE, 3University of Tokyo, JAPAN, and 4INSERM, FRANCE

W5-543.e DETERMINISTIC CELL-BEAD AND CELL-CELL PAIRING AND ENCAPSULATION
Rafal Krzysztoń, Martin Sauzade, and Eric Brouzes
Stony Brook University, USA

W5-544.e LIGHT-SHEET IN A µTAS FOR SINGLE CELL IMAGING
Erick Vargas-Ordaz1, Sergey Gorelick3, Adrian Neil3, Alex de Marco1,2, and Victor J. Cadarso1,3
1Monash University, AUSTRALIA, 2University of Warwick, UK, and 3Melbourne Centre for Nanofabrication, AUSTRALIA

W5-545.e OPTIMIZATION OF MARINE BACTERIA MICROENCAPSULATION FOR THE DISCOVERY OF NOVEL MARINE NATURAL PRODUCTS
Emily Pope, Tartela Alkayyali, Sydney Wheatley, Christopher Cartmell, Jultwahnique MacDonald, Bradley Halili, Russell G. Kerr, and Ali Ahmadi
University of Prince Edward Island, CANADA

W6-641.e A HYPERBOLIC MICROFLUIDIC IMPEDANCE CHIP FOR DEFORMABILITY CYTOMETRY
Riccardo Reale1, Adele De Ninno1,2, Luca Businaro2, Paolo Bisegna1, and Federica Caselli1
1University of Rome Tor Vergata, ITALY and 2Italian National Research Council, ITALY

W6-642.e DIRECT QUANTIFICATION OF SINGLE CELL DRUG UPTAKE
Erika J. Fong1, Nick. R. Hum1,2, Kelly A. Martin1, Melinda Simon3, Gaby G. Loots1,2, and Ted J. Ognibene1
1Lawrence Livermore National Laboratory, USA, 2University of California, Merced, USA and 3San Jose State University, USA
W6-643.e MACROMOLECULE DELIVERY INTO HARD-TO-TRANSFECT PRIMARY CELLS VIA HYDRODYNAMIC CELL DEFORMATION
Jeongsoo Hur and Aram Chung
Korea University, KOREA

W6-644.e PHENOTYPE BASED SELECTIVE SINGLE CELL ISOLATION USING NEAR-INFRARED PULSE LASER FOR SPATIALLY RESOLVED OMICS ANALYSIS
Yongju Lee1, Amos Chungwon Lee1, Ahyoun Choi1, Kyoungeob Shin1, Okju Kim2, Yushin Jung2, Changhee Kim2, Taechoon Ryu2, and Sungsoon Kwon1
1Seoul National University, KOREA and 2Celemics, Inc., KOREA

Th7-741.e A MICROFLUIDIC DEVICE TO MEASURE THE SHEAR ELASTIC MODULUS OF SINGLE RED BLOOD CELLS
Ninad Mehendale1, Savita Kumari1, Priyanka Naik1, Dhrubaditya Mitra2,3, and Debjani Paul1
1Indian Institute of Technology, Bombay, INDIA, 2KTH Royal Institute of Technology, SWEDEN, and 3Stockholm University, SWEDEN

Th7-742.e DROPLET MICROFLUIDICS FOR STUDIES OF BACTERIAL GENETIC TRANSFORMATION IN STREPTOCOCCUS PNEUMONIAE
Trinh Lam, Mark Mainschein-Cline, David T. Eddington, and Donald A. Morrison
University of Illinois, Chicago, USA

Th7-743.e MARKERS FOR ASTROGENESIS IN HETEROGENEOUS NEURAL STEM CELL SAMPLES BY SINGLE-CELL IMPEDANCE CYTOMETRY
John Moore1, Carlos Honrado1, Armita Salahi1, Alan Jiang2, Andrew Yale2, Lisa Flannagan2, and Nathan S. Swami1
1University of Virginia, USA and 2University of California, Irvine, USA

Th7-744.e RED BLOOD CELLS AS MODEL PARTICLES WITH MODULATED SUBCELLULAR ELECTROPHYSIOLOGY FOR IMPEDANCE CYTOMETRY
Armita Salahi, Carlos Honrado, and Nathan S. Swami
University of Virginia, USA

Th8-841.e ACTIVE PARTICLE BASED SELECTIVE TRANSPORT AND RELEASE OF CELL ORGANELLES AND MECHANICAL PROBING OF A SINGLE NUCLEUS
Yue Wu, Afu Fu, and Gilad Yossifon
Technion – Israel Institute of Technology, ISRAEL

Th8-842.e ELECTRICAL SENSING OF SICKLED RED BLOOD CELLS SUBPOPULATIONS IN MICROFLUIDIC DEVICE
Tieying Xu1, Maria A. Lizarralde-Iragorri2, Jean Roman1, Emile Martincic3, Valentine Brousse2, Olivier Français4, Wassim El Nemer3, and Bruno Le Pioufle1
1Université Paris-Saclay, FRANCE, 2Université de Paris, FRANCE, 3Université Paris-Sud, FRANCE, and 4University Gustave Eiffel, FRANCE

Th8-843.e MATCHING AND COMPARING OBJECTS IN A SERIAL CYTOMETER
Nikita Podobedov1,2, Matthew DiSalvo1,3, Jason Hsu2,4, Paul Patrone2, and Gregory A. Cooksey2
1Columbia University, USA, 2National Institute of Standards and Technology (NIST), USA, 3Johns Hopkins University, USA, and 4Montgomery Blair High School, USA

Th8-844.e SERIAL MICROFLUIDIC CYTOMETRY WITH INERTIAL AND HYDRODYNAMIC FLOW FOCUSING
Matthew DiSalvo1,2, Paul N. Patrone2, and Gregory A. Cooksey2
1Johns Hopkins University, USA and 2National Institute of Standards and Technology (NIST), USA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-147.e</td>
<td>AN ENZYME-FREE AND ULTRAFAST CELL-DISSOCIATION TECHNIQUE FOR CELL CULTURE APPLICATIONS USING ACOUSTOFLUIDICS</td>
<td>Alinaghi Salari1,2, Sila Appak-Baskoy1,2, Imogen R. Coe1, Scott S.H. Tsai1,2, and Michael C. Kolios1,2</td>
<td>1Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and 2Ryerson University, CANADA</td>
</tr>
<tr>
<td>M1-148.e</td>
<td>MODULAR TISSUE ASSEMBLY FOR FABRICATION OF COMPLEX AND SCALED UP TISSUE</td>
<td>Byeongwook Jo, Yuya Morimoto, and Shoji Takeuchi</td>
<td>University of Tokyo, JAPAN</td>
</tr>
<tr>
<td>M1-149.e</td>
<td>TUNABLE 3D IN VITRO ARTERY-MIMICKING MULTICHANNEL SYSTEM FOR DISEASE MODELING</td>
<td>Minkyung Cho and Je-Kyun Park</td>
<td>Korea Advanced Institute of Science and Technology (KAIST), KOREA</td>
</tr>
<tr>
<td>M2-246.e</td>
<td>DIRECTING SELF-ORGANIZATION AND DIFFERENTIATION OF STEM CELLS USING A MICROMESH SUSPENSION CULTURE</td>
<td>Kennedy O. Okeyo, Yuta Ando, and Taiji Adachi</td>
<td>Kyoto University, JAPAN</td>
</tr>
<tr>
<td>M2-247.e</td>
<td>NEW MICROFLUIDIC DESIGNS FOR HIGH-THROUGHPUT ANALYSIS OF ANGIOGENESIS, BLOOD VESEL PERMEABILITY AND ENDOTHELIAL ACTIVATION</td>
<td>Elise Delannoy1,2, Anthony Treizebre2, and Fabrice Soncin1</td>
<td>1Lille University, FRANCE and 2University Polytechnique Hauts-de-France, FRANCE</td>
</tr>
<tr>
<td>M2-248.e</td>
<td>Z-WIRE – A MICRO-SCAFFOLD THAT SUPPORTS GUIDED TISSUE ASSEMBLY AND INTRAMYOCARDIUM DELIVERY FOR CARDIAC REPAIR</td>
<td>Luis E. Portillo-Esquivel, Vibudha Nanduri, Feng Zhang, Wenbin Liang, and Boyang Zhang</td>
<td>McMaster University, CANADA</td>
</tr>
<tr>
<td>T3-347.e</td>
<td>FLOW-THROUGH CELL CULTURE SYSTEM USING MICROCAVITIES EMBEMEDDED IN SPONGELIKE PDMS MATRIX</td>
<td>Mai Takagi, Masumi Yamada, and Minoru Seki</td>
<td>Chiba University, JAPAN</td>
</tr>
<tr>
<td>T3-348.e</td>
<td>RAPID PROTOTYPING OF CONCAVE MICROWELLS FOR SPHEROID CULTURE BY COMBINING MICROMILLING AND CARAMEL REPLICA MOULDING</td>
<td>Zhiyuan Dong, Bangyong Sun, and Gang Li</td>
<td>Chongqing University, CHINA</td>
</tr>
<tr>
<td>T4-446.e</td>
<td>3D CO-CULTURED MULTICELLULAR SPHEROIDS ON MICROFLUIDIC CHIP FOR STUDYING ECM-MEDIATED DRUG RESISTANCE</td>
<td>Venkanagouda S. Goudar1, Long Sheng Lu2, Manohar Prasad Koduri1, and Fan-Gang Tseng1,3</td>
<td>1National Tsing Hua University, TAIWAN, 2Taipei Medical University Hospital, TAIWAN, and 3Academia Sinica, TAIWAN</td>
</tr>
<tr>
<td>T4-447.e</td>
<td>FORMATION OF CONTRACTILE SKELETAL MUSCLE TISSUE WITH TENDON TISSUE AT BOTH ENDS</td>
<td>Yuya Morimoto, Shigenori Miura, and Shoji Takeuchi</td>
<td>University of Tokyo, JAPAN</td>
</tr>
</tbody>
</table>
T4-448.e REPLICA MOLDING OF THIOL-ENE MICROWELL ARRAYS FOR MICROFLUIDIC 3D CELL SPHEROID CULTURING
Päivi Järvinen, Sari Tähkä, Ashkan Bonabi, Ville Jokinen, and Tiina Sikanen
1University of Helsinki, FINLAND and 2Aalto University, FINLAND

W5-546.e 3D PRINTED DEVICE FOR 96-WELL HYDROSTATIC PRESSURE CONTROL
Adam Szmelter and David Eddington
University of Illinois, Chicago, USA

W5-547.e HIGHLY PARALLELIZED HUMAN EMBRYONIC STEM CELL DIFFERENTIATION IN NANO-LITER CULTURERS
Anke R. Vollertsen, Simone A. ten Den, Verena Schwach, Albert van den Berg, Robert Passier, Andries D. van der Meer, and Mathieu Odijk
University of Twente, THE NETHERLANDS

W5-548.e SEQUESTERING EXTRACELLULAR VESICLE PROFILES IN NEUROFLUIDICS
Zeynep Malkoc, Stephanie E. McCalla, and Anja Kunze
Montana State University, USA

W6-645.e A DROPLET MICROFLUIDIC PLATFORM FOR GENERATING STEM CELL-DERIVED AND LONG-LASTING HUMAN LIVER MICROTISSUES
Regeant Pandey, David A. Kukla, Alexandra L. Crampton, David K. Wood, and Salman R. Khetani
1University of Illinois, Chicago, USA and 2University of Minnesota, USA

W6-646.e INTEGRATED HEPATOCYTE SPHEROID FORMATION AND ENCAPSULATION FOR SYSTEMATIC STUDY OF EXTRACELLULAR MATRIX EFFECT
Shuai Deng, Yanlun Zhu, Xiaoyu Zhao, and Hon Fai Chan
Chinese University of Hong Kong, CHINA

W6-647.e SIMPLE CHEMICAL GRADIENT GENERATION FOR A SPHEROID CULTURE ARRAY
Panhui Yang, Lei Wu, and Hongju Mao
Chinese Academy of Sciences, CHINA

Th7-745.e A MICROFLUIDIC ORGANOID TRAPPING DEVICE TO FORM TUBE-LIKE INTESTINAL ORGANOIDS
Miki Matsumoto, Yuya Morimoto, Toshiro Sato, and Shoji Takeuchi
1University of Tokyo, JAPAN and 2Keio University School of Medicine, JAPAN

Th7-746.e INTERPENETRATING HYDROGEL NETWORK BASED ON 3D-PRINTABLE ENDOTHELIAL CELLS CO-CULTURED WITH FIBROBLASTS
Soo Lee Kim, Gihyun Lee, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th7-747.e SKIN-EQUIVALENT CULTURE DEVICE FOR APPLYING VERTICAL COMPRESSION
Satoshi Inagaki, Keigo Nishimura, Yuya Morimoto, and Shoji Takeuchi
University of Tokyo, JAPAN

Th8-845.e A SIMPLE METHOD TO ANALYZE NATURAL HYPOXIA EXPRESSION IN JUMBO SPHEROIDS ON-CHIP
Elena Refet-Mollof, Ouafa Najyb, Rodin Chermat, Julie Lafontaine, Philip Wong, and Thomas Gervais
1Polytechnique Montréal, CANADA and 2Centre Hospitalier de l’Université de Montréal, CANADA

Th8-846.e MODELING CTC CLUSTERS USING 3D-PRINTED AGAROSE MICROWELLS
Qiuye Luan, Jian Zhou, Celine Macaraniag, and Ian Papautsky
University of Illinois, Chicago, USA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th8-847.e</td>
<td>TIME-LAPSE IMAGING OF MOUSE EMBRYONIC STEM CELLS USING AN AUTOMATED MICROFLUIDIC DEVICE</td>
<td>Adam F. Laing¹, Venkat Tirumala¹, Evan Hegarty¹, Sudip Mondal¹, Peisen Zhao¹, William B. Hamilton², Joshua M. Brickman², and Adela Ben-Yakar³</td>
<td>University of Texas, Austin, USA and University of Copenhagen, DENMARK</td>
</tr>
<tr>
<td>T3-349.e</td>
<td>A CIRCULATING CO-CULTURE MICROFLUIDIC DEVICE FOR THE DYNAMIC SAMPLING OF PARACRINE FACTORS</td>
<td>Emmaline F. Miller¹, Jacy Busboom², Joshua J. Clavin¹, Elizabeth C. Martin¹, and Adam T. Melvin¹</td>
<td>Louisiana State University, USA and University of Wyoming, Laramie, USA</td>
</tr>
<tr>
<td>T4-449.e</td>
<td>A MODULAR GRANULOMA MODEL FOR MICROENVIRONMENT SIGNALING STUDIES IN VITRO</td>
<td>Maia S. Gower, Samuel B. Berry, Xiaojing Su, Chetan Seshadri, and Ashleigh B. Theberge</td>
<td>University of Washington, USA</td>
</tr>
<tr>
<td>W5-549.e</td>
<td>DENDRITIC CELL MIGRATION IN 2D CONFINED ENVIRONMENT</td>
<td>Yongjun Choi¹,² and Yoon-Kyoung Cho¹,²</td>
<td>Ulsan National Institute of Science & Technology (UNIST), KOREA and Institute for Basic Science (IBS), KOREA</td>
</tr>
<tr>
<td>W6-648.e</td>
<td>HIGH THROUGHPUT INTRACELLULAR DELIVERY FACILITATED BY ACOUSTOFLUIDICS</td>
<td>Alinaghi Salari¹,², Sila Appak-Baskoy¹,², Imogen R. Coe², John Abousawan², Costin N. Antonescu², Scott S.H. Tsai¹,², and Michael C. Kolios¹,²</td>
<td>Institute for Biomedical Engineering, Science and Technology (iBEST), CANADA and Ryerson University, CANADA</td>
</tr>
<tr>
<td>Th7-748.e</td>
<td>MICROFLUIDIC CHAMBER DEVICE TO TEST QUORUM SENSING THEORY</td>
<td>Jia Hwei Cheong, Xiao Qiu, Yang Liu, James Griffith, Heinzr Bernd Schüttler, Jonathan Arnold, and Leidong Mao</td>
<td>University of Georgia, USA</td>
</tr>
<tr>
<td>Th8-848.e</td>
<td>MULTIPLEXED END-POINT MICROFLUIDIC CHEMOTAXIS ASSAY USING CENTRIFUGAL ALIGNMENT</td>
<td>Pan Deng¹, Sampath Satti¹, Kerryn Matthews¹, Simon P. Duffy¹,², and Hongshen Ma¹,³</td>
<td>University of British Columbia, CANADA, British Columbia Institute of Technology, CANADA, and Vancouver General Hospital, CANADA</td>
</tr>
<tr>
<td>M1-150.e</td>
<td>AN ULTRA-HIGH-DENSITY MICROFLUIDIC PLATFORM TO IMAGE C. ELEGANS FOR HIGH-CONTENT PHENOTYPIC SCREENS</td>
<td>Sudip Mondal, Evan Hegarty, Chris Martin, Sertan K. Gökçe, and Adela Ben-Yakar</td>
<td>University of Texas, Austin, USA</td>
</tr>
<tr>
<td>M1-151.e</td>
<td>MICROFLUIDIC DEVICE TO SCREEN THE ELECTRIC INDUCED BEHAVIORAL RESPONSE OF MULTIPLE ZEBRAFISH LARVAE</td>
<td>Arezoo Khalili, Ellen van Wijngaarden, Khaled Youssef, Georg Zoidl, and Pouya Rezai</td>
<td>York University, CANADA</td>
</tr>
</tbody>
</table>
M2-249.e CONTROLLABLE MICROFLUIDIC ROTATION OF *CAENORHABDITIS ELEGANS*
Peng Pan1,2, John D. Laver1, Zhen Qin1, Yuxiao Zhou1, Ran Peng1, Lijun Zhao3, Hui Xie3, John A. Calarco1, and Xinyu Liu1
1University of Toronto, CANADA, 2McGill University, CANADA, and 3Harbin Institute of Technology, CANADA

M2-250.e ON-DEMAND DIRECT CURRENT ELECTRIC FIELD IMMOBILIZATION ENABLES HIGH-RESOLUTION IMAGING OF *C. ELEGANS*
Khaled Youssef1, Daphne Archonta1, Terrance J. Kubiseski1, Anurag Tandon2, and Pouya Rezai1
1York University, CANADA and 2University of Toronto, CANADA

T3-350.e CONTROLLING THE BODY ORIENTATION OF *C. ELEGANS* BY EXPLOITING ITS PROPRIOCEPTION IN A MICROFLUIDIC CONFINEMENT FOR BODY WALL MUSCLE IMAGING
Samuel Sofela1,2, Sarah Sahloul1, Sukanta Bhattacharjee1, and Yong-Ak Song1,2
1New York University Abu Dhabi, UAE and 2New York University, USA

T3-351.e ON-DEMAND SAMPLE SELECTION AND BEHAVIORAL SCREENING OF ACTIVE MICROSWIMMERS ENABLED BY AN OPEN-ACCESSIBLE DEVICE
Gongchen Sun, Cassidy-Arielle Manning, Ga Hyun Lee, and Hang Lu
Georgia Institute of Technology, USA

T4-450.e EFFECT OF MICROFLUIDIC PROCESSING ON THE VIABILITY OF BOAR AND BULL SPERMATOZOA
Tanja Hamacher1, Johanna T.W. Berendsen1, Stella A. Kruit1, Marleen L.W.J. Broekhuijse2,3, and Loes I. Segerink1
1University of Twente, THE NETHERLANDS, 2CRV, THE NETHERLANDS, and 3Topigs Norsvin, THE NETHERLANDS

T4-451.e PARALLEL SCREENING OF SINGLE ZOOSPORE GERMINATION AND GERM TUBE PROTRUSIVE FORCES
Yiling Sun, Ayelen Tayagui, Ashley Garrill, and Volker Nock
University of Canterbury, NEW ZEALAND

W5-550.e EGG LAYING NEURON MEDIATES ELECTROSENSATION IN *CAENORHABDITIS ELEGANS*
Khaled Youssef1, Daphne Archonta1, Terrance J. Kubiseski1, Anurag Tandon2, and Pouya Rezai1
1York University, CANADA and 2University of Toronto, CANADA

W5-551.e STRAIGHTFORWARD MICROFLUIDIC SYSTEM FOR BEHAVIORAL RESPONSES ANALYSIS OF *C. ELEGANS* TO PHYSICAL CUES
Sunhee Yoon, Tae-Joon Jeon, and Sun Min Kim
Inha University, KOREA

W6-649.e HABITUATION OF ZEBRAFISH LARVAE TO ELECTRICAL STIMULUS
Arefzoo Khalili, Ellen van Wijngaarden, Georg Zoidl, and Pouya Rezai
York University, CANADA

Th7-749.e ELECTRIC FIELD INDUCED *C. ELEGANS* EGG LAYING IS NEURON-MEDIATED AND DEPENDENT ON FIELD POLARITY
Khaled Youssef1, Daphne Archonta1, Terrance J. Kubiseski1, Anurag Tandon2, and Pouya Rezai1
1York University, CANADA and 2University of Toronto, CANADA

Th8-849.e IN-VIVO QUANTIFICATION OF DROSOPHILA LARVA HEART FUNCTIONS
Alireza Zabihihesari, Arthur J. Hilliker, and Pouya Rezai
York University, CANADA
e - Cells, Organisms and Organs on a Chip

Organs on Chip

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-152.e</td>
<td>A MICROFLUIDIC MODEL OF THE HUMAN PLACENTA</td>
<td>Taisei Amanokura, Takeshi Hori, Norio Kobayashi, Hiroaki Okae, Takahiro Arima, and Hirokazu Kaji</td>
<td>Tohoku University, JAPAN</td>
</tr>
<tr>
<td>M1-153.e</td>
<td>FABRICATION AND FLUIDIC INTEGRATION OF SELF-ASSEMBLED CELLULAR MICROTBULES FOR NEPHRON-ON-CHIP APPLICATIONS</td>
<td>Kevin Tröndle¹, Ahmad Itani¹, Fritz Koch¹, Roland Zengerle¹,², Stefan Zimmermann¹, and Peter Koltay¹,²</td>
<td>University of Freiburg, GERMANY and ²Hahn-Schickard, GERMANY</td>
</tr>
<tr>
<td>M1-154.e</td>
<td>LAB-ON-A-CHIP SYSTEM INTEGRATED WITH NANOFIBER MATS FOR BIOCHEMICAL SIMULATION OF HYPOXIA OF CARDIAC CELLS</td>
<td>Anna Kobuszewska, Dominik Kolodziejek, Michal Wojasiński, Tomasz Ciach, Zbigniew Brzózka, and Elżbieta Jastrzębska</td>
<td>Warsaw University of Technology, POLAND</td>
</tr>
<tr>
<td>M1-155.e</td>
<td>MODELLING SKIN PRO-INFLAMMATORY RESPONSE IN AN ENGINEERED INFECTED EPIDERMIS MODEL</td>
<td>Maryam Jahanshai, Zhina Hadisi, and Mohsen Akbari</td>
<td>University of Victoria, CANADA</td>
</tr>
<tr>
<td>M1-156.e</td>
<td>WOUND-ON-A-CHIP DEVICE FOR HUMAN SKIN HEALING ASSAYS</td>
<td>Kamit Talar¹, Holly N. Wilkinson², Alexander Iles¹, Matthew J. Hardman², and Nicole Pamme³</td>
<td>¹University of Hull, UK and ²Hull York Medical School, UK</td>
</tr>
<tr>
<td>M2-251.e</td>
<td>A MULTI-CULTURE ARRAY FOR MODELLING NUMEROUS MECHANISMS OF CUTANEOUS DRUG REACTIONS</td>
<td>Lor Huai Chong¹, Terry Ching¹,², Gianluca Grenci³, and Yi-Chin Toh¹,⁴</td>
<td>¹National University of Singapore, SINGAPORE, ²Singapore University of Technology and Design, SINGAPORE, ³Mechanobiology Institute, SINGAPORE, and ⁴Queensland University of Technology, AUSTRALIA</td>
</tr>
<tr>
<td>M2-252.e</td>
<td>FROM MODEL SYSTEM TO THERAPY – SCALABLE PRODUCTION OF PERFUSABLE VASCULARIZED LIVER SPHEROIDS IN "OPEN-TOP" 384- WELL PLATE</td>
<td>Dawn S.Y. Lin, Shravanthi Rajasekar, Mandeep Kaur Marway, and Boyang Zhang</td>
<td>McMaster University, CANADA</td>
</tr>
<tr>
<td>M2-253.e</td>
<td>LOW-COST OPEN MICROFLUIDIC DEVICE FOR VASCULARIZED SPHEROID-ON-A-CHIP</td>
<td>Qinyu Li, Kai Niu, and Xiaolin Wang</td>
<td>Shanghai Jiao Tong University, CHINA</td>
</tr>
<tr>
<td>M2-254.e</td>
<td>MODELLING THE TUMOR MICRO-ENVIRONMENT IN HEPATOCELLULAR CARCINOMA USING MULTI-CELLULAR SPHEROIDS</td>
<td>Ana Ortiz-Perez, Agnieszka Zuchowska, Jean-Baptiste Blondé, Ruchi Bansal, and Séverine Le Gac</td>
<td>University of Twente, THE NETHERLANDS</td>
</tr>
<tr>
<td>T3-352.e</td>
<td>A VASCULARIZED MICRO LIVER MODEL SUPPORTS ROBUST ALBUMIN AND CYP450 EXPRESSION BY HUMAN HEPATOCYTES</td>
<td>Satomi Matsumoto, Jennifer S. Fang, Yu-Hsi Chen, Da Zhao, Abraham P. Lee, and Christopher C.W. Hughes</td>
<td>University of California, Irvine, USA</td>
</tr>
<tr>
<td>T3-353.e</td>
<td>HEART-LIVER ON A CHIP INTEGRATED WITH A MICROELECTRODE ARRAY TO MONITOR EXTRACELLULAR FIELD POTENTIALS OF CARDIOMYOCYTES</td>
<td>Dongxiao Zhang¹, Yoshikazu Hirai¹, Ken-ichiro Kamei¹, Osamu Tabata¹,², and Toshiyuki Tsuchiya¹</td>
<td>¹Kyoto University, JAPAN and ²Kyoto University of Advanced Science, JAPAN</td>
</tr>
</tbody>
</table>
MEASURING BARRIER FUNCTION IN A GUT-ON-CHIP
Elsbeth G.B.M. Bossink, Mariia Zakharova, Mathieu Odijk, and Loes Segerink
University of Twente, THE NETHERLANDS

ON-CHIP MODELLING OF THE BIOPHYSICS OF PANCREATIC DUCTAL ADENOCARCINOMA FOR ASSESSMENT WITH NEW THERAPEUTICS
Delanyo Kpeglo¹, Margaret Knowles¹, Malcolm Haddrick², Stephen D. Evans¹, and Sally A. Peyman¹
¹University of Leeds, UK and ²Medicines Discovery Catapult (MDC), UK

AN ELASTIC PROTEIN MEMBRANE FOR PERFUSABLE MICROFLUIDIC CELL BARRIER MODELLING IN A POLYDIMETHYLSILOXANE-FREE FLEXIBLE CHIP
Lisa D. Muiznieks, Jessica Ayache, Emma Thomée, and Noémi Thomazo
Elvesys - Microfluidics Innovation Center, FRANCE

HEMOSTASIS-ON-A-CHIP: EVALUATING THE EFFICACY OF THROMBIN-CONJUGATED IRON OXIDE NANO PARTICLES FOR PLATELET ACTIVATION IN ORGANOTYPIC BLOOD VESSELS
Trine University, USA

MECHANICAL STIMULATION INCREASES ECM PRODUCTION BY CHONDROCYTES IN A CARTILAGE-ON-A-CHIP PLATFORM
Carlo Alberto Paggi¹, Jan Hendriks¹, Liliana Moreira Teixeira¹, Marcel Karperien¹, and Sèverine Le Gac¹
¹University of Twente, THE NETHERLANDS and ²Utrecht University, THE NETHERLANDS

ORAL MUCOSA-CHIP AS AN ALTERNATIVE PLATFORM TO EVALUATE THE IMPACTS OF DENTAL MONOMERS
Khanh Ly¹, Seyed Rooholghodosi¹, Christopher Rahimi¹, Benjamin Rahimi¹, Diane R. Bienk², Gili Kaufman², Christopher Raub¹, and Xiaolong Luo¹
¹Catholic University of America, USA and ²ADA Science and Research Institute, USA

CANCER METASTASIS RECAPITULATED IN THREE-DIMENSIONAL HUMAN LIVER-CHIP
Jooyoung Ro¹,², Junyoung Kim¹,², Chaeun Lee¹,², and Yoon-Kyoung Cho¹,²
¹Ulsan National Institute of Science & Technology (UNIST), KOREA and ²Institute for Basic Science (IBS), KOREA

MEMS ACTUATION PROMOTES IN VITRO BRAIN-ON-CHIP MATURATION
Alex Bastiaens¹, Gulden Akçay¹, Maaike Fransen¹, Sijia Xie², and Regina Luttge¹
¹Eindhoven University of Technology, THE NETHERLANDS and ²Paul Scherrer Institute, SWITZERLAND

RECONSTRUCTING THE ARTERIAL INTIMA-MEDIA INTERFACE USING A DUAL-LANE EXTRACELLULAR MATRIX PATTERNED MICROFLUIDIC 3D CO-CULTURE PLATFORM FOR STUDY OF ATHEROSCLEROSIS
Chengxun Su¹, Nishanth Venugopal Menon¹, Xiaohan Xu¹, Yu Rong Teo¹, Huan Cao¹, Rinkoo Dalan¹,², Chor Yong Tay¹, and Han Wei Hou¹
¹Nanyang Technological University, SINGAPORE and ²Tan Tock Seng Hospital, SINGAPORE

A 3D MICROPATTERNED NEURONAL CULTURE PLATFORM USING EXTRACELLULAR MATRIX-BASED HYDROGEL ON A MICROELECTRODE ARRAY
Dongjo Yoon, Jaejung Son, Je-Kyun Park, and Yoonkey Nam
Korea Advanced Institute of Science and Technology (KAIST), KOREA

CONTINUOUS MONITORING OF ISOGENIC BLOOD-BRAIN BARRIER INTEGRITY IN A PDMS-FREE MICROPHYSIOLOGICAL SYSTEM
Thomas E. Winkler¹, Isabelle Matthiesen¹, Dimitrios Voulgaris¹, Polyxeni Nikolakopoulou², and Anna Herland¹,²
¹KTH Royal Institute of Technology, SWEDEN and ²Karolinska Institute, SWEDEN
INTEGRATED ANISOTROPIC TUBULAR CARDIAC TISSUE AND CIRCULATING MICROCHANNEL SYSTEM FOR DRUG TESTING
Bo-Heng (Henry) Liu and Fan-Gang Tseng
National Tsing Hua University, TAIWAN

WITHDRAWN

SECRETOME ANALYSIS WITH SIMULTANEOUS ON-CHIP ANGIoGENESIS AND ANASTOMOSIS BETWEEN HUMAN ARTERIAL AND VENOUS CELLS
Elisabeth Hirth1, Claudius Dietsche1, Todd Duncombe1, Danilo Ritz2, Maria Filippova2,3, and Petra S. Dittrich1
1ETH Zürich, Basel, SWITZERLAND, 2University of Basel, SWITZERLAND, and 3University Hospital, SWITZERLAND

A 3D-PRINTED MODULAR MICROCHIP WITH AN INTEGRATED IMPELLER PUMP TO MODEL INTER-ORGAN COMMUNICATION
Sophie R. Cook and Rebecca R. Pompano
University of Virginia, USA

DEVELOPMENT OF CLOSED AND PUMPLESS PLATFORM FOR CO-CULTURE IN MINIMALIZED SPACE
Hidetaka Ueno1,2, Yuri Aoki3, Kenji Hanamura3, Mai Yamamura3, Tomoaki Shirao3, and Takaaki Suzuki3
1National Institute of Advanced Industrial Science and Technology (AIST), JAPAN, 2JSPS Research Fellow, JAPAN, and 3Gunma University, JAPAN

INTEGRATING PANCREAS TISSUE SLICES WITH ADVANCED ANALYTICAL APPROACHES FOR MEASUREMENT OF INSULIN RELEASE
I-An Wei and Michael G. Roper
Florida State University, USA

MICROFLUIDICS AND IMMUNOTHERAPY: MODELLING SOLID TUMORS
Jose M. Ayuso, Maria Virumbrales-Munoz, Patrick H. McMinn, Shujah Rehman, Cate M. Fitzgerald, Melissa C. Skala, and David J. Beebe
University of Wisconsin, USA

SOFT STRETCHABLE BIOLOGICAL MEMBRANES FOR ORGANS-ON-CHIP
Pauline Zamprogno1, Giuditta Thoma1, Veronika Cencen2, Dario Ferrari1, Barbara Putz2, Johann Michler3, Georg E. Fantner2, and Olivier T. Guenat1,4
1University of Bern, SWITZERLAND, 2Ecole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, 3EMPA Swiss Federal Laboratories for Materials Science and Technology, SWITZERLAND, and 4University Hospital of Bern, SWITZERLAND

A LIVER-IN-CHIP PLATFORM FOR PRESERVING EX VIVO TISSUE VIABILITY
Foivos Chatzidimitriou, Soon Seng Ng, S. Tamir Rashid, Joseph M. Sherwood, and Darryl R. Overby
Imperial College London, UK

EFFECT OF SHEAR STRESS ON THE EXPRESSION OF FUNCTIONAL PROTEINS IN A BILAYER PROXIMAL TUBULE-ON-A-CHIP
Ramin Banan Sadeghian1, Ryohei Ueno1, Toshikazu Araoka1, Jun Yamashita1, Tatsuji Enoki2, Minoru Takasato3, and Ryuji Yokokawa1
1Kyoto University, JAPAN, 2Takara Bio, Inc., JAPAN, and 3RIKEN, JAPAN
INVESTIGATING DRUG-INDUCED AUTOPHAGY IN A MICROFLUIDIC MODEL OF GLIOBLASTOMA
Ehsan Samiei¹, Saeid Ghavami², and Mohsen Akbari¹
¹University of Victoria, CANADA and ²University of Manitoba, CANADA

MICROPILLAR-BASED MICROFLUIDIC SYSTEM FOR STUDIES OF 3D PANCREATIC ISLET STRUCTURES
Patrycja Sokolowska¹-², Anna Grabowska¹, Kamil Żukowski¹, Elzbieta Jastrzebska¹, Zbigniew Brzozka¹, and Agnieszka Dobrzyn²
¹Warsaw University of Technology, POLAND and ²Nencki Institute of Experimental Biology, POLAND

SYNOVIAL MEMBRANE ON CHIP: A NEW TOOL TO STUDY CO-CULTURE RESPONSE TO MECHANICAL STIMULATION
Carlo Alberto Paggi¹, Mariia Zakharova¹, Loes Segerink¹, Sérénne Le Gac¹, Liliana Moreira-Teixeira¹-², and Marcel Karperien¹
¹University of Twente, THE NETHERLANDS and ²Utrecht University, THE NETHERLANDS

FORMATION OF A NEURON-MUSCLE CONSTRUCT USING NEURAL CELL FIBERS AND SKELETAL MUSCLE TISSUE FOR BIOHYBRID ACTUATORS
Akihiro Sunagawa¹, Midori Negishi¹-², Minghao Nie¹, Yuya Morimoto³, and Shoji Takeuchi¹
¹University of Tokyo, JAPAN and ²Musashino University, JAPAN

A NEW PLATFORM FOR CULTURE AND ELECTROPORATION OF 3D CELL CONSTRUCTS BASED ON A POROUS SCAFFOLD
Marie Frénéa-Robin, Julien Marchalot, Laure Franqueville, and Charlotte Rivière
University of Lyon, FRANCE

RECAPITULATING CYCLIC STRETCH IN MICROVASCULATURE BY FLOW-INDUCED CUES IN HYDROGEL MICROCHANNELS
Walter Varhue, Aditya Rane, Shayn Peirce-Cottler, George Christ, and Nathan S. Swami
University of Virginia, USA

ACTOMYOSIN-COLLAGEN HYBRID SOFT ACTUATOR
Kenjirō Kohno¹, Shusei Kawara¹, Yuichi Hiratsuka², and Hiroaki Onoe¹
¹Keio University, JAPAN and ²Japan Advanced Institute of Science and Technology (JAIST), JAPAN

THE INFLUENCE OF SHEAR STRESS GENERATED BY OSMOTIC DRIVEN FLOW ON THE ALIGNMENT OF ENDOTHELIAL CELL
Zong-Han Sie¹, Lu-Wei Wu¹, Yen-Yu Chang¹, Yi-Chin Toh², and Ya-Yu Chiang¹
¹National Chung-Hsing University, TAIWAN and ²Queensland University of Technology, AUSTRALIA

ANTI-BIOFOULING SURFACES FEATURED WITH MAGNETIC ARTIFICIAL CILIA
Shuaizhong Zhang¹, Pan Zuo¹, Ye Wang¹, Patrick R. Onck², and Jaap M.J. den Toonder¹
¹Eindhoven University of Technology, THE NETHERLANDS and ²University of Groningen, THE NETHERLANDS

ZINC OXIDE NANOPILLARS INHIBIT BACTERIAL ATTACHMENT
Nicholas Lin, Amin Valiei, Nathalie Tufenkji, and Christopher Moraes
McGill University, CANADA
Synthetic Biology

T4-457.e CELL-FREE LOW-COST *DE NOVO* BACTERIOPHAGE GENOME SYNTHESIS FROM SEQUENCE-VERIFIED MICROARRAY-SYNTHESIZED DNA OLIGONUCLEOTIDES
Huiran Yeom1, Taehoon Ryu2, Namphil Kim1, and Sunghoon Kwon1
1Seoul National University, KOREA and 2Celemics, Inc, KOREA

W5-556.e DNA NANOBALL RETRIEVAL MICROCHIP DESIGN FOR HIGH-THROUGHPUT ERROR-FREE DNA PURIFICATION PLATFORM
Namphil Kim, Huiran Yeom, Yonghee Lee, and Sunghoon Kwon
Seoul National University, KOREA

W6-656.e DROPLET MICROFLUIDIC MICROCOLONY SORTING BY FLUORESCENCE AREA FOR HIGH THROUGHPUT, YIELD-BASED SCREENING OF TRIACYL GLYCERIDES IN *S. CEREVISIAE*
Sara M. Björk, Martin Schappert, and Haakan N. Joensson
KTH Royal Institute of Technology, SWEDEN

e - Cells, Organisms and Organs on a Chip

Th7-756.e INTRACELLULAR SENSING OF EXPRESSED FACTORS BY REDOX AMPLIFICATION USING BIO-CAPACITOR ON NANOPOROUS GOLD
Yi Liu, John H. Moore, and Nathan S. Swami
University of Virginia, USA

Th8-856.e RT-OGENE: A REAL-TIME OPTOGENETICS SYSTEM FOR CONTROLLING GENE EXPRESSION USING MODEL-BASED DESIGN
James M. Perry, Guy Soffer, and Steve C.C. Shih
Concordia University, CANADA

Liposomes/Membranes

M1-158.e AN APROTIC POLAR SOLVENT ASSISTED SIZE-TUNING METHOD FOR MICROFLUIDIC PRODUCTION OF LIPID-BASED DRUG NANOCARRIERS WITH VARIOUS SIZES
Niko Kimura, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi
Hokkaido University, JAPAN

M2-257.e MICROFLUIDIC FORMATION OF LIPID-OUT ASYMMETRIC DROPLET INTERFACE BILAYERS FOR ON-CHIP PHARMACOKINETICS MODELLING
Elanna B. Stephenson and Katherine S. Elvira
University of Victoria, CANADA
e - Cells, Organisms and Organs on a Chip

Other Applications in Biology

W5-557.e AN ACOUSTIC-ELECTRICAL SHEAR OPENING PORATION (AESOP) PLATFORM FOR INTRACELLULAR DELIVERY
Yu-Hsi Chen, Mohammad Aghaamoo, and Abraham P. Lee
University of California, Irvine, USA

W6-657.e DEVELOPMENT OF NOVEL SCREENING PLATFORM AND ORGANOID CULTURE MODEL FOR QUANTIFIABLE HIGH THROUGHPUT SCREENING OF TUMOR ORGANOID
Yong Hun Jung, Donghee Choi, Kyungwon Park, Satbyol Lee, Hyunwoo Chung, Jihun Yang, Jinah Kim, Byungsun Min, and Seok Chung
Korea University, Korea, Korea

Th7-757.e MICROFLUIDIC INTRACELLULAR DELIVERY VIA FLUID CELL SHEARING
GeoumYoung Kang, Chan Kwon, and Aram Chung
Korea University, Korea

Th8-857.e ORGANOSILICON INTERACTION WITH BIOLOGICAL MEMBRANES
Pepijn Beekman, Agustin Enciso-Martinez, Sidharam Pujari, Han Zuilhof, Leon Terstappen, Cees Otto, and Séverine Le Gac
University of Twente, The Netherlands and Wageningen University, The Netherlands

e - Cells, Organisms and Organs on a Chip

Industrial Benefactor

W6-658.e CUSTOMIZABLE MICROFLUIDIC DEVICES FOR CO-CULTURE AND ALI RECREATION: BE-DUPLICATE & BE-TRANSFLOW
Sandra González Lana, Lara Pancorbo Lambán, Sara Aldea Martín, Luis E. Serrano Ramón, and Rosa M. Monge Prieto
BEOChip S.L., Spain and University of Zaragoza, Spain

Th8-879.e NOURISHING, MONITORING AND STIMULATING CELLS WITH BI/OND’S ORGAN-ON-CHIP DEVICE
Amr Othman, Lucie Decourt, William. F. Quiros-Solano, Dik C. van Gent, Sanjiban Chakrabarty, Cinzia Silvestri, and Nikolas Gaios
BIOND Solutions B.V., The Netherlands, Erasmus Medical Centre, The Netherlands, and Manipal Academy of Higher Education, India

M1-182.e A USER-FRIENDLY MICROFLUIDICS PLATFORM FOR HIGH-CONTENT IMAGING OF SMALL MODEL ORGANISMS FOR ASSESSMENT OF CHEMICAL TOXICITY
Evan M. Hegarty, Adam F. Laing, Adela Ben-Yakar
Newormics LLC, USA
RESEALABLE, RECIRCULATING PLATFORM FOR THE MECHANICAL STIMULATION OF CELL CO-CULTURES IN A TRANSWELL INSERT
Sandro Meucci1, Jasper ten Napel1, Bianka Fabinyi1, Astrid D. Bakker2, Lasse Jensen3, and Anna Fahlgren4
1Micronit Microtechnologies BV, THE NETHERLANDS, 2Academisch Centrum Tandheelkunde Amsterdam (ACTA), THE NETHERLANDS, 3BioReperia, SWEDEN, and 4Linköping University, SWEDEN

REAL-TIME OPTICAL MONITORING OF CELL CULTURE IN CENTRIFUGAL MICROFLUIDICS
Edwin En-Te Hwu1, Lina Gruzinskyte1,3, Atsushi Ishimoto1,2, Laura Serioli1, Sriram Thoppe Rajendran1,
Akinobu Yamaguchi2, Kinga Zór1, and Anja Boisen1
1Technical University of Denmark, DENMARK, 2University of Hyogo, JAPAN, and
3University of Copenhagen, DENMARK

A MICROFLUIDIC CHIP FOR MEASURING WHITE BLOOD CELL CONCENTRATION FROM AN UNDILUTED, WHOLE BLOOD
Georgia Korompili1, Katerina Skorda1, and Nikos Chronis1,2
1National Centre of Scientific Research (NCSR) Demokritos, GREECE and 2University of Crete, GREECE

A MICROFLUIDIC SYSTEM FOR INVESTIGATING THE TRANSIT DYNAMICS OF LIVE AND HEAT-KILLED E. COLI BACTERIA IN C. ELEGANS
Vittorio Viri, Thomas Lehnert, and Martin A.M. Gijs
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

3D VASCULAR NETWORKS CO-CULTURED WITH VARIOUS TYPES OF COLORECTAL CANCER CELLS FOR VALIDATION OF NATURAL KILLER CELL CYTOTOXICITY
Hyeri Choi, Jiyoung Song, Dohyun Park, and Noo Li Jeon
Seoul National University, KOREA

HIGH-RESOLUTION AND MASSIVE TRAPPING AND SEPARATION OF BACTERIA AND NANOPARTICLES IN AN OPTOFLUIDIC CHIP
Yuzhi Shi, Yi Zhang, Yang Liu, Shilun Feng, Wee Ser, Peng Huat Yap, and Ai Qun Liu
Nanyang Technological University, SINGAPORE

EVALUATION OF PLURIPOTENCY IN HUMNAN INTESTINAL CELLS BY MICROFLUIDIC-BASED SINGLE CELL DEFORMABILITY ANALYSIS
Miyu Terada1, Sachiko Ide1, Toyohiro Naito1, Michiya Matsusaki2, and Noritada Kaji1
1Kyushu University, JAPAN and 2Osaka University, JAPAN

MICROFLUIDIC COLLAGEN PATTERNING FOR TENDON REGENERATION
Francesca Giacomini, David B. Barata, Hoon Suk Rho, Zeinab Tahmasebi Birgani, Stefan Giselbrecht, Roman Truckenmüller, and Pamela Habibović
Maastricht University, NETHERLANDS

HIGHLY PARALLEL SINGLE-CELL SIMULTANEOUS TRANSCRIPTOME AND PROTEIN ANALYSIS
Xing Xu, Mingxia Zhang, Xuebing Zhang, Zhi Zhu, and Chaoyong Yang
Xiamen University, CHINA

MICROPHYSIOLOGICAL MODEL OF ENDOTHELIUM-FIBROBLAST INTERFACE FOR INVESTIGATING WOUND HEALING
Halston E. Deal1,2, Ashlyn T. Young1,2, Ashley C. Brown1,2, and Michael A. Daniele1,2
1North Carolina State University, USA and 2University of North Carolina, Chapel Hill, USA
DNA HYDROGELS AS A SCAFFOLD FOR ORGANS-ON-CHIPS: STUDY OF BUOYANCY AND SEDIMENTATION OF MICROBEADS IN DNA GELS
Emilie Belot1,2, Yannick Tauran1,2, Yusuke Sato3, Masahiro Takinoue4, Arnaud Brioude4, and Anthony J. Genot2
1Université de Lyon, FRANCE, 2University of Tokyo, FRANCE, 3Tohoku University, JAPAN, and 4Tokyo Institute of Technology, JAPAN

RECONSTRUCTION OF 3D HUMAN LYMPHATIC VESSEL WITHIN TUMOR IMMUNE MICROENVIRONMENT USING HIGH-THROUGHPUT PLATFORM
Habin Kang1, Somin Lee1, Dohyun Park1, James Yu1, Seung Kwon Koh2, Duck Cho2, Da-Hyun Kim1, Kyung-Sun Kang1, and Noo Li Jeon1
1Seoul National University, KOREA and 2Sungkyunkwan University, KOREA

A HYDROGEL CO-CULTURE PLATFORM REVEALS COMMUNITY RESPONSES OF BACTERIA TO ALGAL HOST AND NUTRIENTS UNDER A DIFFUSION-CONTROLLED ENVIRONMENT
Hyungseok Kim1, Jeffrey A. Kimbrel2, Jessica Wollard2, Xavier Mayali2, and Cullen R. Buie1
1Massachusetts Institute of Technology, USA and 2Lawrence Livermore National Laboratory, USA

TOWARDS HYBRID BIOPRINTING AIDED LIVER ON CHIP
Muhammad Asim Faridi, Zofia Korczak, Philip Dalsbecker, and Caroline B. Adiels
Gothenburg University, SWEDEN

MICROGROOVE GUIDED 2D CELL CULTURE APPLIED TO CONSTRUCT 3D SEMI-SPHERICAL HEART PUMPING SYSTEM
Bo-Heng (Henry) Liu, Guan-You Shih, and Fan-Gang Tseng
National Tsing Hua University, TAIWAN

THERMAL MORPHOGENESIS IN TISSUE-LIKE ARRAYS OF DROPLETS
Nicolas Lobato-Dauzier1, Robin Deteix1, Shu Okumura1, Alexandre Baccouche1, Guillaume Gines2, Yannick Rondelez2, Teruo Fujii1, and Anthony J. Genot1
1University of Tokyo, JAPAN and 2PSL Research University, FRANCE

ISOLATION OF ALZHEIMER'S DISEASE ASSOCIATED EXOSOMES USING GRAPHENE OXIDE-BASED MICROFLUIDIC CHIP WITH PREFIBRILLAR AMYLOID β (AβExoChip)
Yoon-Tae Kang, Ji-Young Kim, Thomas Hadlock, Andrew Rellinger, Nicholas Kotov, and Sunita Nagrath
University of Michigan, Ann Arbor, USA

CHARACTERIZATION OF EXTRACELLULAR VESICLES PURIFIED BY ULTRACENTRIFUGATION, SIZE-EXCLUSION CHROMATOGRAPHY AND LAB-ON-A-DISC FILTRATION
Lucile Alexandre1,2, Philippe DeCorwin-Martin1, Rosalie Martel1, Molly Shen1, Johan Renault1, Lorenna Oliveira1, Andy Ng1, and David Juncker1
1McGill University, CANADA and 2Institut Curie, FRANCE

MOLECULAR AND FUNCTIONAL EXTRACELLULAR VESICLE ANALYSIS USING NANOPATTERNED MICROCHIPS MONITORS TUMOR PROGRESSION AND METASTASIS
Peng Zhang1,2, Chaoyong Yang2, and Yong Zeng1
1University of Kansas, USA and 2Shanghai Jiaotong University School of Medicine, CHINA
T3-359.f DETERMINISTIC LATERAL DISPLACEMENT FOR THE SORTING OF EXTRACELLULAR VESICLES FROM COMPLEX BIOLOGICAL SAMPLES
Marie Gaillard1, Nicolas Sarrut-Rio1, Léopold Virot1, François Boizot1, Nicolas Verplanck1, Camille Raillon1, Vincent Agache1,2, Yoann Roupion1, and Aurélie Thuaire1
1University Grenoble Alpes, FRANCE and 2Massachusetts Institute of Technology, USA

T3-360.f PRECISELY METERED DRIED BLOOD SPOTS BY USING TUNABLE HYDROPHOBIC BURST VALVES
Lorenz Van Hileghem, Dries Vloemans, Francesco Dal Dosso, and Jeroen Lammertyn
KU Leuven, BELGIUM

T4-459.f EFFICIENT HUMAN PLASMA EXTRACTION FROM UNDILUTED WHOLE BLOOD BY CELL-FREE LAYER MARGINATION WITH CLOSED-LOOP SINGLE MICROFLUIDIC CHANNEL DEVICE
Lap Man Lee, Ketan H. Bhatt, Dustin W. Haithcock, Mary A. Arugula, Balabhaskar Prabhakarpandian, and Kapil Pant
CFD Research Corporation, USA

T4-460.f TEM GRID PREPARATION WITH MINIMAL USER INTERACTION
Janosch Hauser1, Gustaf Kylberg2, Göran Stemme1, Ida-Maria Sintorn2, and Niclas Roxhed1
1KTH Royal Institute of Technology, SWEDEN and 2Vironova AB, SWEDEN

W5-558.f EXOSOME ISOLATION VIA CLICK CHEMISTRY (EXOCCLICK) CHIP FOR SCREENING AND QUANTIFICATION OF CANCER-ASSOCIATED EXOSOMES
Yoon-Tae Kang, Thomas Hadlock, Shrutí Jolly, and Sunitha Nagra
University of Michigan, Ann Arbor, USA

W6-659.f EXTRACELLULAR VESICLE DETECTION DIRECTLY IN COMPLEX MATRICES BY USING FO-SPR SENSOR
Yagmur Yildizhan1, Venkata Suresh Vajrala1, Charles Declerck1, Edward Geeurickx2, Sam Noppen1, Dominique Schols1, Johannes V. Swinnen1, Sven Eyckerman2, An Hendrix2, Jeroen Lammertyn1, and Dragana Spasic1
1KU Leuven, BELGIUM and 2Gent University, BELGIUM

Th7-758.f HARVESTING BIOMOLECULES FROM TISSUE BY POROUS SILICON NANONEEDLES
Davide A. Martella and Ciro Chiappini
King’s College London, UK

Th8-858.f INKJET-PRINTED 3D NANO-ENGINEERED MICROCHIPS FOR FUNCTIONAL ANALYSIS OF METASTATIC EXOSOMES
Yong Zeng1, Peng Zhang2, and Liang Xu2
1University of Florida, USA and 2University of Kansas, USA

M1-160.f EVALUATION OF DLP 3D PRINTING MATERIALS FOR THE MANUFACTURE OF RECOMBINASE POLYMERASE AMPLIFICATION (RPA) MICROREACTORS
Ole Behrmann1,2, Matthias Hügle1,2, Franz Eckardt1, Iris Bachmann1, Frank T. Hufert1, and Gregory Dame1
1Brandenburg Medical School Theodor Fontane, GERMANY and 2University of Freiburg, GERMANY

M2-260.f METAL OXIDE NANOWIRES MICROFLUIDIC DEVICES FOR DNA METHYLATION MAPPING
Marina Musa1, Takao Yasui1,2, Taisuke Shimada1, Akihide Arima1, and Yoshinobu Baba1,3
1Nagoya University, JAPAN, 2Japan Science and Technology Agency (JST), JAPAN, and 3National Institutes for Quantum and Radiological Science and Technology, JAPAN
T3-361.f MICRONA DETECTION USING STRAND DISPLACEMENT AMPLIFICATION IN HYDROGEL PARTICLES
Nidhi Juthani and Patrick S. Doyle
Massachusetts Institute of Technology, USA

T4-461.f NAKED-EYE DETECTION OF POLYMERASE CHAIN REACTION ON MICROFLUIDICS
Ren Shen¹, Yanwei Jia¹, Pui-In Mak¹, and Rui P. Martins¹,²
¹University of Macau, CHINA and ²Universidade de Lisboa, PORTUGAL

W5-559.f AUTOMATION OF THE PAPER-BASED VERTICAL FLOW PLATFORM FOR RADIATION BIOOSIMETRY DURING DEEP SPACE MISSION
Jasmine P. Devadhasan, Paul Kuehl, Jerome Lacombe, Jana Stoudemire, Twyman Clements, Jian Gu,
and Frederic Zenhausern
University of Arizona, College of Medicine, USA

W5-560.f OE-PCR IN DROPLETS FOR RAPID CONVERSION OF ANTIBODY LIBRARIES
Micaela Vitor¹, Lucas Pereira², Guillaume Mottet¹, Emmanuelle Vigne¹, and Melody Shahsavarian¹
¹Sanofi, FRANCE and ²L’École Supérieure de Physique et de Chimie Industrielles (ESPCI)FRANCE

W6-660.f CENTRIFUGAL MICROFLUIDIC 4-PLEX DIGITAL DROplet PCR FOR QUANTIFICATION OF CIRCULATING TUMOR DNA
Franziska Schlenker¹, Elena Kipf¹, Nadine Borst¹,², Tobias Hutzenlaub¹,², Nils Paust¹,², Roland Zengerle¹,²,
Felix von Stetten¹,², and Peter Juelg¹
¹Hahn-Schickard, GERMANY and ²University of Freiburg, GERMANY

W6-661.f REAGENT INTEGRATION IN DISPOSABLE THERMOPLASTIC 2D MICROWELL ARRAYS USING A CUSTOM SPOTTING PIN
Supriya Padmanabhan, Micaela Everitt, Michael Yeh, Ian White, and Don L. DeVoe
University of Maryland, College Park, USA

Th7-759.f COMPLEX NUCLEIC ACID HYBRIDIZATION REACTIONS INSIDE CAPILLARY-DRIVEN MICROFLUIDIC CHIPS
Marie L. Salva¹,², Marco Rocca¹,², Yong Hu¹, Emmanuel Delamarche², and Christof M. Niemeyer¹
¹Karlsruhe Institute of Technology, GERMANY and ²IBM Research Europe, SWITZERLAND

Th7-760.f UNRAVELLING THE REACTION MECHANISM AND KINETICS OF DNAZYMES BASED ON BULK AND SINGLE MOLECULE STUDIES
Aida Montserrat Pagès¹, Phée De Keyser¹, Victor Top¹, Rebecca Andrews², Maarten Hertog¹,
Achillefs N. Kapanidis², Dragana Spasic¹, and Jeroen Lammertyn¹
¹KU Leuven, BELGIUM and ²Oxford University, UK

Th8-859.f DIGITAL AND MULTIPLEX MICRO RNA DETECTION WITH MICROCOMPARTMENTALIZED BEAD ASSAY
Thomas Jet¹, Guillaume Gines², Alexis Moravic², Yannick Rondelez², and Valérie Taly¹
¹Université de Paris, FRANCE and ²ESPCI Paris, FRANCE
M1-161.f AUTOMATING NANODROPLET SAMPLE PREPARATION WITH LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY FOR HIGH THROUGHPUT SINGLE-CELL PROTEOMICS
Ying Zhu
Pacific Northwest National Laboratory, USA

M1-162.f TIME-RESOLVED MICROFLUIDIC SAMPLE PREPARATION FOR CRYO-EM STRUCTURAL ANALYSIS OF BIOMOLECULAR ASSEMBLIES
Byungjin Lee1, Märt-Erik Mäeots2, Dong-Ho Kim1, Kyung Han Kim1, Sung Sik Lee1, Radoslav E. Ivanov2, Matthias Peter3, and Chang-Soo Lee1
1Chungnam National University, KOREA, 2ETH Zürich, SWITZERLAND, and 3Francis Crick Institute, UK

M2-261.f BIOASSAY ARCHITECTURE COMBINING A QUANTITATIVE G6PDH ASSAY AND A MEASUREMENT OF HEMOGLOBIN CONCENTRATION ON A SINGLE CAPILLARY-DRIVEN MICROFLUIDIC CHIP
Marco Rocca1,2, Yuksel Temiz1, Marie L. Salva1,2, Samuel Castonguay1, Thomas Gervais3, Christof M. Niemeyer2, and Emmanuel Delamarche1
1IBM Research Europe, SWITZERLAND, 2Karlsruhe Institute of Technology (KIT), GERMANY, and 3École Polytechnique de Montréal (EPM), CANADA

T3-362.f DETECTION OF MULTIPLE SEPSIS BIOMARKERS USING A MICROFLUIDIC FLOW CYTOMETER
Xilong Yuan1, Todd Darcie1, Srishti Garg1, James Dou2, Lu Chen2, and J. Stewart Aitchison1
1University of Toronto, CANADA and 2Thinkari Research Inc., CANADA

T4-462.f DROPLET MICROFLUIDICS BASED ENZYMATIC DIGESTION: A NEW SAMPLE PREPARATION TOOL FOR MALDI-TOF MS
Mathilde Richerd1, Sarah Bregant2, Florent Malloggi2, and Stéphanie Descroix1
1Institut Curie, FRANCE and 2Université Paris-Saclay, FRANCE

W5-561.f ELISA UTILIZING THIN-LAYERED CHANNEL FOR PERFECT CAPTURE AND ACCUMULATION OF TARGET MOLECULE
Ryoichi Ohta1, Keisuke Sekiya1, Smirnova Aderina1, Emi Mori1, and Takehiko Kitamori1,2
1University of Tokyo, JAPAN and 2National Tsing Hua University, TAIWAN

W6-662.f PICO-LITER PROTEIN DIGESTION AND SEPARATION USING NANOFLOIDIC DEVICE
Kyojiro Morikawa1, Koki Yamamoto1, Hiroki Sano1, Yutaka Kazoe1, Hisashi Shimizu1, Hiroyuki Imanaka3, Koreyoshi Imamura1, and Takehiko Kitamori1,4
1University of Tokyo, JAPAN, 2Keio University, JAPAN, 3Okayama University, JAPAN, and 4National Tsing Hua University, TAIWAN

Th7-761.f IN SITU NMR LAB-ON-A-CHIP SYSTEM FOR STUDYING PROTEIN-LIGAND INTERACTIONS
Marek Plata, William Hale, Manvendra Sharma, Jörn M. Werner, and Marcel Utz
University of Southampton, UK

Th8-860.f AUTOMATED CHIP-BASED THIN-LAYERED ELISA
Adelina Smirnova1, Ryoichi Ohta1, and Takehiko Kitamori2
1University of Tokyo, JAPAN and 2National Tsing Hua University, TAIWAN

Th8-861.f LOCALIZED MULTIPLEXED SURFACE FUNCTIONALIZATION OF THERMOPLASTIC MICROCHANNELS TOWARDS THE ENRICHMENT AND PROTEIN CARGO ANALYSIS OF EXTRACELLULAR VESICLES
André Kling, Yannick R.F. Schmid, Jonas Nikoloff, and Petra S. Dittrich
ETH Zürich, SWITZERLAND
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institutions</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-163.f</td>
<td>PATIENT-DERIVED KIDNEY CANCER MODELS ON-A-CHIP TO INFORM PRECISION ONSOLOGY</td>
<td>Maria Virumbrales-Muñoz, Jiong Chen, Jose Ayuso, E. Jason Abel, and David J. Beebe</td>
<td>University of Wisconsin, Madison, USA</td>
</tr>
<tr>
<td>M2-262.f</td>
<td>A BIO-MICROCHIP FUNCTIONALIZED BY SELF-ASSEMBLED AUNPS FOR EFFICIENT CAPTURE AND RELEASE OF CIRCULATING TUMOR CELLS</td>
<td>Yixing Gou, Zheng You, Changku Sun, and Dahai Ren</td>
<td>Tianjin University, CHINA and Tsinghua University, CHINA</td>
</tr>
<tr>
<td>M2-263.f</td>
<td>QUANTIFICATION OF PROTEIN EXPRESSION LOCALLY ON FROZEN TISSUE SECTIONS TO EVALUATE TUMOR HETEROGENEITY</td>
<td>Anna Fomitcheva Khartchenko, Peter Schraml, and Govind V. Kaigala</td>
<td>ETH Zürich, SWITZERLAND, IBM Research – Europe, SWITZERLAND, and University Hospital Zurich, SWITZERLAND</td>
</tr>
<tr>
<td>T3-363.f</td>
<td>ACOUSTIC MICROSTREAMING CAPTURE OF CIRCULATING TUMOR CELLS AND CIRCULATING CANCER ASSOCIATED FIBROBLASTS AND FUNCTIONAL IMMUNE ASSESSMENT FROM BREAST CANCER PATIENTS</td>
<td>Ruoyu Jiang, Sudhanshu Agrawal, Ritesh Parajuli, Anshu Agrawal, and Abraham P. Lee</td>
<td>University of California, Irvine, USA</td>
</tr>
<tr>
<td>T3-364.f</td>
<td>SACCA CHIP ENABLED CIRCULATING TUMOR CELL CLUSTERS PHENOTYPING FOR CANCER IMMUNOTHERAPY RESPONSE MONITORING</td>
<td>Chun-Jieh Hsu, Yu-Chia Kan, Chun-Wei Lee, Jen-Kuei Wu, Kang-Yun Lee, Po-Hao Feng, Wei-Chiao Chang, and Fan-Gang Tseng</td>
<td>National Tsing Hua University, TAIWAN, Academia Sinica, TAIWAN, and Taipei Medical University, TAIWAN</td>
</tr>
<tr>
<td>T4-463.f</td>
<td>CREATING AN IN VITRO LUNG MICROENVIRONMENT VIA DNA-DIRECTED PATTERNING TO INVESTIGATE THE ROLE OF EXTRACELLULAR VESICLES IN METASTASIS</td>
<td>Sean E. Kitayama and Lydia L. Sohn</td>
<td>University of California, Berkeley, USA</td>
</tr>
<tr>
<td>T4-464.f</td>
<td>TUMOR-AGNOSTIC MICROFLUIDIC ISOLATION OF CIRCULATING TUMOR CELLS FROM LEUKAPHERESIS PRODUCTS</td>
<td>Avanish Mishra, Taronish D. Dubash, Jon F. Edd, Michelle Jewett, Suhasa G. Garre, Nezimi Murat Karabacak, Daniel C. Rabe, Baris R. Mutlu, John R. Walsh, Ravi Kapur, Shannon L. Stott, Shyamala Maheswaran, Daniel A. Haber, and Mehmet Toner</td>
<td>Massachusetts General Hospital, USA, Harvard Medical School, USA, Shriners Hospitals for Children, USA, MicroMedicine, Inc., USA, Howard Hughes Medical Institute, USA</td>
</tr>
<tr>
<td>W5-562.f</td>
<td>HIERARCHICAL HERRINGBONE MICROWELLS FOR HIGH-THROUGHPUT SINGLE CELL ENTRAPMENT</td>
<td>Ayoub Glia, Pavithra Sukumar, Muhammedin Deliorman, and Mohammad A. Qasaimeh</td>
<td>New York University Abu Dhabi, UAE and New York University, USA</td>
</tr>
<tr>
<td>W5-563.f</td>
<td>WHOLE GENOME SEQUENCING OF SINGLE CIRCULATING TUMOR CELLS AFTER THEIR SIZE-BASED ENRICHMENT</td>
<td>Wooseok Lee, Amos Chunghwon Lee, Yongju Lee, Ahyoun Choi, Sudeok Kim, and Sunghoon Kwon</td>
<td>Seoul National University, KOREA</td>
</tr>
</tbody>
</table>
MICRODISSECTED TUMOR TISSUE HAS LOWER HYPOXIA, APOPTOSIS, AND NECROSIS, AND HIGHER PROLIFERATION THAN TUMOR SLICES CULTURED UNDER SIMILAR CONDITIONS
Dina Dorrigiv¹,², Kayla Simeone¹,², Benjamin Péant¹,², Euridice Carmona¹, Jennifer K. Dupont¹, Anne-Marie Mes-Masson¹,², and Thomas Gervais¹,³
¹Centre Hospitalier de l'Université de Montréal, CANADA, ²Université de Montréal, CANADA, and ³Polytechnique Montréal, CANADA

MICROFLUIDIC MODELS FOR NATURAL KILLER/CANCER CELL INTERACTIONS IN METASTASIS
Heather E. Bomberger, Behiye Kodal, Martin Felices, and David K. Wood
University of Minnesota, USA

PARALLELIZED MICROFLUIDIC THIN CELL TRAPPERS FOR EFFECTIVELY SELECTING BLOOD CIRCULATING TUMOR CELLS
Natsumi Shimmyo, Makoto Furuhata, Masumi Yamada, Rie Utoh, and Minoru Seki
Chiba University, JAPAN

SPATIALLY RESOLVED MICROFLUIDICS FOR STIMULATING LOCAL ISCHEMIA IN BRAIN TISSUE
Michael T. Cryan, Yuxin Li, and Ashley E. Ross
University of Cincinnati, USA

WIRELESS BIORESORBABLE NERVE STIMULATORS WITH SOFT CUFF ELECTRODE
Kyung Su Kim, Seunghun Han, and Jahyun Koo
Korea University, KOREA

POINT-OF-CARE DETECTION OF CIRCULATING HISTONES FOR INTERNAL TRAUMA DIAGNOSIS
Micaela L. Everitt and Ian M. White
University of Maryland, College Park, USA

FINGER-DRIVEN PUMP ASSISTED MICROFLUIDIC PLATFORM FOR COLORIMETRIC DETECTION OF LITHIUM
Angelo Traina¹, Han Gardeniers², and Burcu Gumuscu²,³
¹University of Roma "La Sapienza", ITALY, ²University of Twente, THE NETHERLANDS, and ³Eindhoven University of Technology, THE NETHERLANDS
<table>
<thead>
<tr>
<th>ID</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-165.f</td>
<td>POINT-OF-CARE SOLUTION FOR THERAPEUTIC DRUG MONITORING ENABLED BY INTEGRATING FO-SPR READOUT INTO A SELF-POWERED MICROFLUIDIC PLATFORM</td>
<td>Henry Ordutowski, Jiahuan Qu, Ruben Verbruggen, Francesco Dal Dosso, Saba Safdar, Nick Geukens, Debby Thomas, Dragana Spasic, and Jeroen Lammertyn</td>
<td>KU Leuven, BELGIUM</td>
</tr>
<tr>
<td>M2-264.f</td>
<td>A MICROFLUIDIC 3-PART DIFFERENTIAL SORTER</td>
<td>Mohammad Aghaamoo, Ruoyu Jiang, Braulio Cardenas Benitez, and Abraham P. Lee</td>
<td>University of California, Irvine, USA</td>
</tr>
<tr>
<td>M2-265.f</td>
<td>WHOLE BLOOD PROFILING REVEALS BIOPHYSICAL IMMUNE RESPONSE SIGNATURES FOR CLINICAL TRIAGE</td>
<td>Kerwin Kwek Zeming, Rohan Vernekar, Mui Teng Chua, Kai Yun Quek, Greg Suton, Timm Krueger, Win Sen Kuan, and Jongyoon Han</td>
<td>1Singapore-MIT Alliance for Research and Technology (SMART) Centre, SINGAPORE, 2University of Edinburgh, UK, 3National University of Singapore, SINGAPORE, 4National University Health System, SINGAPORE, and 5Massachusetts Institute of Technology, USA</td>
</tr>
<tr>
<td>T3-365.f</td>
<td>A SENSOR SURFACE ENGINEERING METHODOLOGY FOR NONINVASIVE WEARABLE ELECTROACTIVE DRUG MONITORING</td>
<td>Shuyu Lin, Wenzhuo Yu, Bo Wang, Yichao Zhao, Ke En, Jialun Zhu, and Sam Emaminejad</td>
<td>University of California, Los Angeles, USA</td>
</tr>
<tr>
<td>T4-465.f</td>
<td>A WEARABLE MICROFLUIDIC SYSTEM FOR HIGH SIGNAL-TO-NOISE RATIO SWEAT RATE SENSING VIA PROGRAMMABLE MICROBUBBLE GENERATION AND TRACKING</td>
<td>Haisong Lin, Shuyu Lin, Jorge Emiliano De Dios Suarez, Harish Athavan, Yibo Wang, Wenzhuo Yu, and Sam Emaminejad</td>
<td>University of California, Los Angeles, USA</td>
</tr>
<tr>
<td>W5-564.f</td>
<td>AN EX VIVO TUMOR-DERIVED MODEL TO STUDY THE EFFECT OF THERAPEUTIC AGENTS USED FOR THE TREATMENT OF CANCER PATIENTS</td>
<td>Kayla Simeone, Benjamin Péant, Euridice Carmona, Diane Provencher, Fred Saad, Thomas Gervais, and Anne-Marie Mes-Masson</td>
<td>1Université de Montréal, CANADA and 2Polytechnique de Montréal, CANADA</td>
</tr>
<tr>
<td>W6-665.f</td>
<td>INDEX MATCHED MICROFLUIDIC DEVICES FOR PRECISE MEASUREMENT OF SINGLE CELL MASS</td>
<td>Edward R. Polanco, Justin Griffin, and Thomas A. Zangle</td>
<td>University of Utah, USA</td>
</tr>
<tr>
<td>Th7-764.f</td>
<td>MECHANICAL PROPERTIES OF HYDROGEL MICRONEEDLES FOR INTERSTITIAL FLUID SAMPLING</td>
<td>Emilee Madsen and Jacqueline C. Linnes</td>
<td>Purdue University, USA</td>
</tr>
<tr>
<td>Th8-864.f</td>
<td>MICROPHYSIOLOGICAL DRUG-SCREENING PLATFORM FOR PERSONALIZED LEUKEMIA TREATMENT</td>
<td>Furkan Gökçe, Mario M. Modena, Beat C. Bornhauser, and Andreas Hierlemann</td>
<td>1ETH Zürich, Basel, SWITZERLAND and 2University Children's Hospital Zürich, SWITZERLAND</td>
</tr>
<tr>
<td>Paper Id</td>
<td>Title</td>
<td>Authors</td>
<td>Institutions</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>M1-166.f</td>
<td>MINIATURIZED DEVICE FOR PERFORMING PCR, INTEGRATED WITH AN ELECTROCHEMICAL DNA BIOSENSOR FOR DETECTION OF CORYNEBACTERIUM DIPHTHERIAE</td>
<td>Kasper Marchlewicz, Iga Ostrowska, Zuzanna Iwón, Robert Ziólkowski, Elżbieta Jastrzębska, Zbigniew Brzózka, and Elżbieta Malinowska</td>
<td>Warsaw University of Technology, Poland, University of Warsaw, Poland, and Centre of Advanced Materials and Technologies CEZAMAT, Poland</td>
</tr>
<tr>
<td>M1-167.f</td>
<td>VIRUS IDENTIFICATION BY EASY TO FABRICATE NANOPORE-CHIP USING ULTRATHIN GLASS-FILM AND OPRICAL BONDING</td>
<td>Takatoki Yamamoto</td>
<td>Tokyo Institute of Technology, Japan</td>
</tr>
<tr>
<td>M2-266.f</td>
<td>PORTABLE MICROSCALE PLATFORM FOR MALARIA AND ANTIMALARIAL RESISTANCE SCREENING IN RESOURCE-LIMITED SETTINGS</td>
<td>Shreya Deshmukh, Oswald Byaruhanga, Patrick Tumwebaze, Bryan Greenhouse, Elizabeth Egan, and Utkan Demirci</td>
<td>Stanford University, USA, Infectious Diseases Research Collaboration, Uganda, and University of California, San Francisco, USA</td>
</tr>
<tr>
<td>T3-366.f</td>
<td>A MULTIPEX GENETIC DIAGNOSTIC DEVICE INTEGRATED WITH VERTICAL PHASEGUIDES CAPABLE OF AUTONOMOUS DISPENSING FOR THE DETECTION OF ARBOVIRUS INFECTIONS</td>
<td>Daigo Natsuhara, Kisuke Tanaka, Hiroka Aonuma, Tatsuya Sakurai, Moeto Nagai, Hirotaka Kanuka, and Takayuki Shibata</td>
<td>Toyohashi University of Technology, Japan and Jikei University School of Medicine, Japan</td>
</tr>
<tr>
<td>T3-367.f</td>
<td>QUANTIFYING BACTERIAL SPORE GERMINATION BY IMPEDANCE CYTOMETRY FOR ASSESSING HOST MICROBIOTA SUCEPTIBILITY</td>
<td>John Moore, Armita Salahi, Carlos Honrado, Christopher Warburton, Cirle Warren, and Nathan S. Swami</td>
<td>University of Virginia, USA</td>
</tr>
<tr>
<td>T4-466.f</td>
<td>NANO/MICROFLUIDIC DEVICE FOR EFFICIENT BACTERIA CAPTURE</td>
<td>Tamer Abdelfattah, Mahsa Jalali, Roozbeh Siavash Moakhar, Sahar Sadat Mahshid, and Sara Mahshid</td>
<td>McGill University, Canada and University of Toronto, Canada</td>
</tr>
<tr>
<td>T4-467.f</td>
<td>RAPID AMPLIFICATION OF FEMTOGRAMS OF DNA WITH HIGH PURITY IN DIGITAL MICROFLUIDICS FOR SEQUENCING</td>
<td>Yuguang Liu, Patricio Jeraldo, Helena Mendes-Soares, Thao Masters, Heidi Nelson, Robin Patel, Nicholas Chia, and Marina Walther-Antonio</td>
<td>Mayo Clinic, USA</td>
</tr>
<tr>
<td>W5-565.f</td>
<td>AN AUTOMATED MICROFLUIDIC DIAGNOSTICS PIPELINE FOR INFECTIOUS DISEASE DETECTION IN LOW RESOURCE SETTINGS</td>
<td>Miren Urrutia Iturritza, Giulia Gaudenzi, Ahamad Saleem Akhtar, Inês Fernandes Pinto, Noa Lapins, Aman Russom, and Håkan Jönsson</td>
<td>KTH Royal Institute of Technology, Sweden and Karolinska Institute, Sweden</td>
</tr>
<tr>
<td>W5-566.f</td>
<td>RAPID BACTERIA ENRICHMENT AND DIAGNOSIS OF ANTIBIOTIC RESISTANCE FROM URINE SAMPLE</td>
<td>Yuetao Li, Andrew Glidle, Julien Reboud, Jing Zhang, Yuanshuai Zhu, Jonathan M. Cooper, Wei Huang, and Huabing Yin</td>
<td>University of Glasgow, UK and University of Oxford, UK</td>
</tr>
</tbody>
</table>
W6-666.f CELL-FREE, CRISPR/CAS-BASED PAPER DIAGNOSTICS FOR FOOD AND WATERBORNE PATHOGEN DETECTION
Helena de Puig Guixe¹, Michael S. Wiederoder², Shannon K. McGraw², and James J. Collins¹
¹Wyss Institute for Biologically Inspired Engineering, USA and ²US Army CCDC - Soldier Center, USA

W6-667.f RESPIDISK: A POINT-OF-CARE PLATFORM FOR FULLY AUTOMATED DETECTION OF RESPIRATORY TRACT INFECTION PATHOGENS IN CLINICAL SAMPLES
Markus Rombach¹, Sebastian Hin¹, Mara Specht¹, Benita Johannsen¹, Jan Lüddecke¹, Nils Paust¹, Roland Zengerle¹, and Konstantinos Mitsakakis²
¹Hahn-Schickard, GERMANY and ²University of Freiburg, GERMANY

Th7-765.f DIRECT ISOLATION AND DETECTION OF PATHOGENIC BACTERIA USING A NANOGAP DEVICE
Jung Y. Han, Michael Yeh, and Don L. DeVoe
University of Maryland, College Park, USA

Th7-766.f RNA/DNA AMPLIFICATION METHODS FOR THE DETECTION OF BACTERIA AND VIRUS THROUGH AN OPTOELECTRONIC LAB-ON-CHIP
Francesca Costantini¹, Nicola Lovechio², Lorenzo Iannascoli³, Valeria Scala⁴, Francesco Faggioli¹, Nicoletta Pucci¹, Stefania Loreti¹, Giampiero deCesare², Augusto Nascetti², and Domenico Caputo²
¹CREA-DC Research Centre for Plant Protection and Certification, ITALY and ²Sapienza University of Rome, ITALY

Th8-865.f HIGH EFFICIENT AND SELECTABLE CONCENTRATION OF BACTEREMIA AND RAPID BACTERIAL ANTIBIOTIC SUSCEPTIBILITY TEST THROUGH ELECTROKINETIC CONCENTRATION MICRODEVICE
Kuan-Hung Chen¹, Shih-Han Lee¹, Chun-Wei Lee¹, Tseren-Onolt Ishdorj², and Fan-Gang Tseng¹,³
¹National Tsing Hua University, TAIWAN, ²Mongolian University of Science and Technology, MONGOLIA, and ³Academia Sinica, TAIWAN

Th8-866.f SURFACE-ENHANCED RAMAN SPECTROSCOPY BASED DETECTION OF β-LACTAMASE ACTIVITY IN SMALL SAMPLES OF RESISTANT E. COLI
Shannon H. Hilton, Martha David, Connor Hall, and Ian M. White
University of Maryland, College Park, USA

f - Diagnostics, Drug Testing & Personalized Medicine
Testing for COVID-19, Rapid Virus Testing, Pandemic Management

M1-168.f LAMP BASED DETECTION OF SARS-COV-2 WITH LOW-COST OFF-THE-SHELF COMPONENTS
Kamalalayam Rajan Sreejith, Muhammad Umer, Narshone Soda, Surasak Kasetsirikul, Muhammad J.A. Shiddiky, and Nam-Trung Nguyen
Griffith University, AUSTRALIA

M2-267.f 3D-PRINTED CAPILLARIC CHIP FOR INSTRUMENTATION-FREE, RAPID, AND QUANTITATIVE COVID-19 SEROLOGICAL TESTING USING SALIVA
Oriol Ymbern, Ahmad Sohrabi, Azim Parandakh, Vahid Karamzadeh, Johan Renault, Marziye Mirbagheri, Zijie Jin, Justin Lessard-Wajcer, Jay Pimprikar, Molly Shen, Lorenna Oliveira, Yiannis Paschalidis, Andy Ng, and David Juncker
McGill University, CANADA

M2-268.f LATERAL FLOW ASSAY FOR THE DETECTION OF NOROVIRUS USING PEPTIDE-COATED GOLD NANOPARTICLES
Taeyeong You, Woojin Jeong, Sun Min Kim, and Tae-Joon Jeon
Inha University, KOREA
A MICROFLUIDIC APPROACH TO RAPID CRISPR-BASED DETECTION OF SARS-COV-2 RNA
Ashwin Ramachandran, Diego A. Huyke, Eesha Sharma, Malaya K. Sahoo, Niaz Banaei, Benjamin A. Pinsky, and Juan G. Santiago
Stanford University, USA

MICRO-RAPID AUTONOMOUS ANALYTICAL DEVICE FOR SARS-COV-2 DETECTION
Jacqueline C. Linnes, Navaporn (Amy) Sritong, Ashlee Colbert, and Karin F.K. Ejendal
Purdue University, USA

AN ADAPTABLE, MASS PRODUCTION CAPABLE, MICROFLUIDIC MIXER FOR POINT OF CARE SAMPLE PREP
Priscilla Delgado, Pranav Dorbala, Abhijit Ravindran, and David Myers
Emory University, USA

DETECTION OF AVIAN INFLUENZA VIRUS AND ITS ANTIBODY BY FLUORESCENCE POLARIZATION IMMUNOASSAY
Keine Nishiyama1, Yohei Takeda2, Masatoshi Maeki1, Akihiko Ishida1, Hirofumi Tani1, Koji Shigemura3, Akihide Hibara2, Haruko Ogawa2, and Manabu Tokeshi1
1Hokkaido University, JAPAN, 2Obihiro University of Agriculture and Veterinary Medicine, JAPAN, 3Tianma Japan, Ltd., JAPAN, and 4Tohoku University, JAPAN

ELECTROCHEMICAL CAPILLARY-FLOW IMMUNOASSAY FOR THE DETECTION OF ANTI-SARS-COV-2 ANTIBODIES
Isabelle C. Samper1, Ana Sánchez-Cano1,2, Wisarut Khamcharoen1,3, Ilhoon Jang1, Brian J. Geiss4, David S. Dandy1, and Charles S. Henry1
1Colorado State University, USA, 2Universitat Autònoma de Barcelona, SPAIN, and 3Srinakharinwirot University, THAILAND

HANDHELD LIGHTWEIGHT BATTERY-OPERATED REAL-TIME PCR DEVICE FOR COVID-19 DIAGNOSIS
Geoffrey Mulberry, Matthew Moench, and Brian N. Kim
University of Central Florida, USA

HIGHLY PERFORMING POINT-OF-CARE MOLECULAR TESTING FOR SARS-COV-2 WITH RNA EXTRACTION AND ISOTHERMAL AMPLIFICATION.
Etienne Coz1, Pierre Garneret1, Elian Martin1, Jean-Claude Manuguerra2, Elodie Brient-Litzler2, Vincent Enouf2, Daniel Felipe Gonzalez Obando2, Jean Christophe Olivo-Marin2, Fabrice Monti1, Sylvie Van der Werf2, and Patrick Tabeling2
1ÉSPCI, FRANCE and 2Institut Pasteur, FRANCE

MICROFLUIDIC GRADIENT GENERATOR FOR DRUG SCREENING APPLICATIONS
Arian Jaberi1, Amir Monemian Esfahani1, Ali Tamayol1,2, and Ruiguo Yang1
1University of Nebraska, Lincoln, USA and 2University of Connecticut, USA

MICROFLUIDIC IMMOBILIZED ENZYME REACTOR FOR DETERMINING THE ELIMINATION OF ENVIRONMENTAL DRUG RESIDUES IN FISH
Vera Kouhi, Tea Pihlaja, Elisa Ollikainen, and Tiina Sikanen
University of Helsinki, FINLAND

"CUBOIDS" FOR MULTIPLEXED MICROFLUIDIC DRUG TESTING OF INTACT TISSUES
Adán Rodríguez, Lisa Horowitz, and Albert Folch
University of Washington, USA
ARTIFICIAL BRAIN "CELLS-ON-A-CHIP" FOR DRUG PERMEABILITY PREDICTION
Jaime L. Korner and Katherine S. Elvira
University of Victoria, CANADA

DROPLET-BASED APPROACH TO HIGH SPEED DRUG DISCOVERY
Stacey Markovic¹, Ryan A. Dubay¹², Peter Hsi¹, Nerses J. Haroutunian¹, Cassie M. Bryan¹, Kettner Griswold Jr.¹, Eric M. Darling², Andrew P. Magyar¹, and Vishal Tandon¹
¹Draper Laboratory, USA and ²Brown University, USA

ESTABLISHMENT OF AN AUTOMATIZED MICROFLUIDIC PLATFORM FOR SCREENING OF NOVEL HBV CAPSID ASSEMBLY MODULATORS (CAMS)
Tamás Vermes¹², Thomas Henkel³, Helmut Buschmann¹, Miquel A. Pericàs², Esther Alza², Thomas Goldner¹, and Andreas Urban¹
¹AiCuris Anti-infective Cures GmbH, GERMANY, ²Institute of Chemical Research of Catalonia (ICIQ), SPAIN, and ³Leibniz Institute of Photonic Technology (IPHT), GERMANY

HIGH-THROUGHPUT GENERATION OF UNIFORM CEREBRAL BRAIN ORGANOIDS
Kyungwon Park¹, Yong Hun Jung¹, and Seok Chung¹²
¹Korea University, KOREA and ²Korea Institute of Science and Technology (KIST), KOREA

2D AND 3D TUMOR MODELS ON-A-CHIP TO EVALUATE EFFECTIVENESS OF PHOTODYNAMIC THERAPY (PDT) WITH GRAPHENE OXIDE CONJUGATES
Agnieszka Zuchowska, Bartlomiej Dabrowski, Artur Kasprzak, Ksenia Kaminska, Magdalena Poplawska, and Zbigniew Brzozka
Warsaw University of Technology, POLAND

A NOVEL MICROSYSTEM FOR STUDYING THE EFFECTIVENESS OF ELECTROCHEMOTHERAPY AND CHEMOTHERAPY PROCEDURES
Sandra Skorupska, Ilona Grabowska-Jadach, Malgorzata Pietà, Artur Dybko, and Zbigniew Brzozka
Warsaw University of Technology, POLAND

DRUG LOADING INTO EXTRACELLULAR VESICLE VIA TONICITY CONTROL
Chaeun Lee¹², Sumit Kumar¹, Juhee Park², Junyoung Kim¹², and Yoon-Kyoung Cho¹²
¹Ulsan National Institute of Science and Technology (UNIST), KOREA and ²Institute for Basic Science (IBS), KOREA

HIGH-THROUGHPUT MICROFLUIDICS FOR EVALUATING MICROBUBBLE ENHANCED DELIVERY OF CANCER THERAPEUTICS IN SPHEROID CULTURES
Matthew D. Bourn¹², Damien V.B. Batchelor¹, Nicola Ingram², James McLaughlan¹², P. Louise Coletta², Stephen D. Evans¹, and Sally A. Peyman¹²
¹University of Leeds, UK and ²St James' University Hospital, UK

MASSIVELY PARALLEL INTRACELLULAR DELIVERY USING TITANIUM OXIDE NANOTUBES
Loganathan Mohan¹, Srabani Kar², Ren Hattori¹, Miho Iishi-Teshima¹, Kavitha Illath², Anuj Tiwari¹, Tuhin Subhra Santra¹, Takayuki Shibata¹, and Moeto Nagai¹
¹Toyohashi University of Technology, JAPAN, ²University of Cambridge, UK, and ³Indian Institute of Technology Madras, INDIA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-170.f</td>
<td>INSTANT LABELING OF THERAPEUTIC STEM CELLS WITH MICROFLUIDICS FOR IN VIVO TRACKING</td>
<td>Todd Sulchek, Hossein Nejadnik, Kyung Oh Jung, Ashok J. Theruvath, Anna Liu, Wei Wu, Louise Kiru</td>
<td>Georgia Institute of Technology, USA and Stanford University, USA</td>
</tr>
<tr>
<td>M2-270.f</td>
<td>USING RBC SHAPES TO DISTINGUISH BETWEEN SICKLE CELL DISEASE AND TRAIT SAMPLES</td>
<td>Riddha Manna, Oshin Sharma, Anish Mahto, Srushti Singh, and Debjani Paul</td>
<td>Indian Institute of Technology, Bombay, INDIA</td>
</tr>
<tr>
<td>T3-371.f</td>
<td>PORTABLE AND AUTOMATED ANALYZER FOR RAPID AND HIGH PRECISION IN VITRO DISSOLUTION OF DRUGS</td>
<td>Zhongmei Chi, Yunxiang Feng, and Li Yang</td>
<td>Northeast Normal University, CHINA and Jingke-Oude Science and Education Instruments Co., Ltd., CHINA</td>
</tr>
<tr>
<td>Th8-869.f</td>
<td>DEVELOPMENT OF A METHOD FOR CELL DELIVERY INTO THE SUBRETINAL SPACE USING BIODEGRADABLE NANOSHEETS</td>
<td>Kazuya Yamashita, Hideto Kojima, Nobuhiro Nagai, Toshiaki Abe, and Hirokazu Kaji</td>
<td>Tohoku University, JAPAN</td>
</tr>
<tr>
<td>Th7-782.f</td>
<td>MICROFLUIDIC METHODS OF AUTOMATED LIPOSOME LIBRARY GENERATION</td>
<td>Valentina Nappo, Gurinder Vinner, Ben Knappett, Damiano Rossi, Richard H. Gray</td>
<td>Dolomite Microfluidics, UK</td>
</tr>
<tr>
<td>M1-181.f</td>
<td>AN EASY-TO-USE MICROFLUIDIC CHIP WITH ISOTHERMAL NUCLEIC ACID AMPLIFICATION FOR RAPID COVID-19 DETECTION</td>
<td>Dan Liu, Haicong Shen, Yuqian Zhang, and Chaoyong Yang</td>
<td>Huaqiao University, CHINA and Xiamen University, CHINA</td>
</tr>
<tr>
<td>M2-280.f</td>
<td>3D NANO-PATTERNED FLUIDIC INTERFACE ENABLES ULTRASENSITIVE DETECTION OF CIRCULATING EXOSOMES FOR IMMUNOTHERAPY RESPONSE PREDICTION</td>
<td>Lingling Wu, Jiafeng Gao, and Chaoyong Yang</td>
<td>Shanghai Jiao Tong University, CHINA and Xiamen University, CHINA</td>
</tr>
<tr>
<td>M2-281.f</td>
<td>ELECTROCHEMICAL IMPEDANCE-BASED DETECTOR FOR SARS-COV-2 ANTIBODIES</td>
<td>Mohamed Z. Rashed, Jonathan A. Kopechek, Mariah C. Priddy, Krystal T. Hamorsky, Kenneth E. Palmer, Nikhil Mittal, Joseph Valdez, and Stuart J. Williams</td>
<td>University of Louisville, USA and Agilent Technologies Inc, USA</td>
</tr>
<tr>
<td>T3-381.f</td>
<td>AT-HOME BLOOD COLLECTION AND RNA STABILIZATION USING A CAPILLARY PRESSURE BASED DEVICE</td>
<td>Amanda J. Haack, Fang Yun Lim, Dakota S. Kennedy, Jing J. Lee, Erwin Berthier, and Ashleigh B. Theberge</td>
<td>University of Washington, USA</td>
</tr>
</tbody>
</table>
T3-382.f IFAST AND RT-LAMP: AN APPROACH FOR ON-CHIP DETECTION OF SARS-CoV-2 RNA FOR RESOURCE-LIMITED SETTINGS
Pablo Rodriguez-Mateos¹, Bongkit Ngamsom¹, Cheryl Walter¹, Charlotte E. Dyer¹, Jesse Gitaka², Alexander Iles¹, and Nicole Pamme¹
¹University of Hull, UK and ²Mount Kenya University, KENYA

T4-481.f HIERARCHICAL MULTIVALENT APTAMERS-PRINTED MICROFLUIDIC DEVICE FOR ISOLATING CIRCULATING FETAL CELLS
Huimin Zhang¹, Xiyuan Yu¹, Yilong Liu², Bingqian Lin², Yidi Wang², Yanling Song², Zhi Zhu², and Chaoyong Yang¹²
¹Shanghai Jiao Tong University School of Medicine, CHINA and ²Xiamen University, CHINA

T4-482.f HIGH THROUGHPUT GLOMERULUS EXPERIMENTAL MODEL DEVICE WITH MECHANICAL FILTRATION FOR DRUG DISCOVERY RESEARCH
Kotaro Doi¹, Hiroshi Kimura², Masaomi Nangaku¹, and Teruo Fujii¹
¹University of Tokyo, JAPAN and ²Tokai University, JAPAN

W5-580.f AN ULTRASENSITIVE DETECTION OF AGGREGATED α-SYNUCLEIN AS A BIOMARKER MOLECULE FOR PARKINSON DISEASE BY LIPOSOME-IMMobilized CANTILEVER BIOSensor USING SELF-TEMPLATING PHENOMENA OF PRIONOID PROTEIN
Ryoko Kobayashi¹, Masanori Sawamura¹, Hodaka Yamakado², Masayuki Sohgawa¹, and Minoru Noda¹
¹Kyoto Institute of Technology, JAPAN, ²Kyoto University, JAPAN, and ³Niigata University, JAPAN

W5-581.f MICRO-IMPLANTS WIRELESS DEVICE FOR DEEP TISSUE PHOTO THERAPEUTICS
Sophie Wan Mei Lian¹, Jin Yunxia², John S. Ho¹², and Chia-Hung Chen³
¹National University of Singapore, SINGAPORE, ²Institute for Health Innovation and Technology (iHealthtech) and ³City University of Hong Kong, HONG KONG

W6-681.f ELECTROMECHANICAL LAB-ON-A-CHIP PLATFORM FOR CREATININE ANALYSIS USING AUTOMATED ELISA PROTOCOLS
Betul Karakuzu, E. Alperay Tarim, Cemre Oksuz, and H. Cumhur Tekin
Izmir Institute of Technology, TURKEY

W6-682.f HUMAN NEUTROPHIL CHEMOTAX THROUGH TAPERED CHANNELS IN RESPONSE TO COMPLEMENT ACTIVATION AND INHIBITION
Sinan Muldur and Daniel Irimia
Massachusetts General Hospital, Harvard Medical, Shriners Hospital for Children, USA

Th7-780.f PERSONALIZED ANTIBIOTHERAPY VIA "FINGER PRICK" BLOOD TEST
University of Freiburg, GERMANY

Th8-878.f MICROFLUIDIC ASSAYS MEASURING NEUTROPHIL RESPONSES TO BORRELIA BURGDORFERI IDENTIFY COMPLEMENT COMPONENT C5A AS A KEY MEDIATOR
Felix Ellett, Sinan Mulder, Anika L. Marand, Charles Marvil, John Branda, Jacob E. LeMieux, Adam B. Raff, Klemen Strle, and Daniel Irimia
Massachusetts General Hospital, Harvard Medical, Shriners Hospital for Children, USA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4-471.g</td>
<td>AI-ASSISTED MICROFLUIDIC STIFFNESS GRADIENT FOR ANALYSIS OF 3D CELL CULTURES IN HYDROGEL BEADS</td>
<td>Vasileios Anagnostidis, Dalia Al-Saadi, and Fabrice Gielen</td>
<td>University of Exeter, UK</td>
</tr>
<tr>
<td>W5-570.g</td>
<td>AI-GUIDED MICROFLUIDIC SYNTHESIS OF COLLOIDAL LEAD HALIDE PEROVSKITE QUANTUM DOTS</td>
<td>Robert W. Epps¹, Amanda A. Volk¹, Kameel Abdel-Latif², Kristofer G. Reyes², and Milad Abolhasani¹</td>
<td>¹North Carolina State University, USA and ²University of Buffalo, USA</td>
</tr>
<tr>
<td>W6-671.g</td>
<td>DEEP LEARNING CLASSIFICATION OF PARTICLE DEPTH FOR DEFOCUSING 3D-3C micro-PTV</td>
<td>Evan Lammertse¹, Martin Sauzade¹, Hongxiao Li², Jun Kong², and Eric Brouzes¹</td>
<td>¹Stony Brook University, USA and ²Georgia State University, USA</td>
</tr>
<tr>
<td>Th7-770.g</td>
<td>FLOW FOCUS-FREE IMAGE FLOW CYTOMETRY BY IMAGE PROCESSING AND DATA ESTIMATION</td>
<td>Arpith Vedhanayagam and Amar S. Basu</td>
<td>Wayne State University, USA</td>
</tr>
<tr>
<td>Th8-870.g</td>
<td>INTELLIGENT ON-CHIP ANALYSIS OF THROMBOSIS IN ECMO WITH A GOAT MODEL</td>
<td>Yuqi Zhou¹, Atsushi Yasimoto¹², Masako Nishikawa¹, Yuya Nobori¹, Yi Wang¹, Masaki Anraku¹²³, Yutaka Yatomi¹, and Keisuke Goda¹⁴⁵</td>
<td>¹University of Tokyo, JAPAN, ²Hokkaido University Hospital, JAPAN, ³Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, JAPAN, ⁴Wuhan University, CHINA, and ⁵University of California, Los Angeles, USA</td>
</tr>
<tr>
<td>M1-171.g</td>
<td>COTTON-BASED MICROFLUIDIC EVAPORATOR TO ENHANCE THE PERFORMANCE OF A THERMOELECTRIC DEVICE</td>
<td>Liang Jun Zheng, Dong Hee Kang, Na Kyong Kim, and Hyun Wook Kang</td>
<td>Chonnam National University, KOREA</td>
</tr>
<tr>
<td>M2-271.g</td>
<td>FLUORESCENT VISUALIZATION OF OIL DISPLACEMENT IN A MICROFLUIDIC DEVICE FOR ENHANCED OIL RECOVERY APPLICATIONS</td>
<td>Khashayar R. Bajgiran, Hannah C. Hymel, Shayan Sombolestani, Nora Safa, Nathalie Dante, James A. Dormán, Dandina Rao, and Adam T. Melvin</td>
<td>Louisiana State University, USA</td>
</tr>
<tr>
<td>T3-372.g</td>
<td>UNDERSTANDING POLYMER RETENTION IN POROUS FORMATIONS USING MICROFLUIDICS</td>
<td>Antonia Sugar, Maged F. Serag, Ulrich Buttner, Satoshi Habuchi, and Hussein Hoteit</td>
<td>King Abdullah University of Science & Technology (KAUST), SAUDI ARABIA</td>
</tr>
</tbody>
</table>
Microfluidics for X-Ray and e-Beam Applications

T4-472.g THREE DIMENSIONAL HYDRODYNAMIC FOCUSING IN A MONOLITHIC FUSED SILICA MICROFLUIDIC DEVICE
Diego A. Huyke\(^1\), Ashwin Ramachandran\(^1\), Thomas Kroll\(^2\), Daniel P. DePonte\(^2\), and Juan G. Santiago\(^1\)
\(^1\)Stanford University, USA and \(^2\)SLAC National Accelerator Lab, USA

Others

W5-571.g AEROSOLIZED DROPLETS AND OPEN MICROFLUIDICS FOR CAPTURING AT-HOME AIRBORNE EXPOSURES
Ulri N. Lee, Tammi L. van Neel, Fang Yun Lim, Jean Berthier, Erwin Berthier, and Ashleigh B. Theberge
University of Washington, USA

W6-672.g REPROGRAMMABLE FERROMAGNETIC DOMAINS FOR RECONFIGURABLE SOFT MAGNETIC ACTUATORS
Hyeonseo Song, Hajun Lee, Jaeyeong Lee, Jun Kyu Cheo, Suwoo Lee, Jee Yoon Yi, Sunghoon Park, Jung-Woo Yoo, Min Sang Kwon, and Jiyun Kim
\(^1\)Ulsan National Institute of Science & Technology (UNIST), KOREA and \(^2\)Seoul National University, KOREA

Th7-771.g TOWARDS ASTROBIOLOGICAL NANOSATELLITE MISSION – LOC INSTRUMENTATION FOR CELL CULTIVATION RESEARCH IN SPACE
Agnieszka Podwin\(^1\), Patrycja Śniadek\(^1\), Adrianna Graja\(^1,2\), Bartosz Kawa\(^1\), Marcin Bialas\(^1\), Wojciech Kubicki\(^1\), Marta Jurga\(^1\), Agata Kaczmarek\(^1\), Krzysztof Matkowski\(^3\), Rafal Walczak\(^1\), and Jan Dziuban\(^1\)
\(^1\)Wroclaw University of Science and Technology, POLAND, \(^2\)SatRevolution S.A., POLAND, and \(^3\)Wroclaw University of Environmental and Life Sciences, POLAND

Industrial Benefactor

W5-572.g A COMPARISON OF CYCLO OLEFIN POLYMER WITH GLASS AND OTHER PLASTICS FOR THE CONSTRUCTION OF MOLECULAR DIAGNOSTIC CONSUMABLE DEVICES
Tachi Sawaguchi, Shota Suzuki, Hiro Fujiki, Toshiro Katayama, and Larry Atupem
Zeon Specialty Materials Inc., USA

Late News

Th7-781.g A KINETIC MATCHING APPROACH ON MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES FOR RAPID ASSESSMENT OF TOTAL POLYPHENOL CONTENT IN TEA
Qinqin Zheng\(^1,3\), Zhenxia Hao\(^1,2\), Lili Jin\(^1\), Hongping Chen\(^1,2\), and Chengyin Lu\(^1,2\)
\(^1\)Chinese Academy of Agricultural Sciences, CHINA, \(^2\)Ministry of Agriculture and Rural Affairs, CHINA, and \(^3\)Graduate School of Chinese Academy of Agricultural Sciences, CHINA