Preliminary Technical Program

The Executive Committee reserves the right to amend the program if necessary.

All indicated times in the program are US Eastern times.
Monday, October 5

08:00 Opening Remarks – Welcome Address

CBMS President
Nicole Pamme, University of Hull, UK

MicroTAS 2020 Conference Chairs
Séverine Le Gac, University of Twente, THE NETHERLANDS
Hang Lu, Georgia Institute of Technology, USA

Plenary Speaker Presentation I

08:25 - 09:25
MP-01 ON-CHIP ROBOTICS: EMERGING FUNCTIONS IN MICROFLUIDIC ENVIRONMENT WITH INTEGRATION OF SENSORS & ACTUATORS
Fumihito Arai
University of Tokyo, JAPAN

09:25 - 09:30 Transition Break

Poster Session M1

09:30 - 10:30 Presentations are listed by topic category with their assigned number starting on page 9.

10:30 - 10:45 Coffee Break (offline)

Panel Discussion I

10:45 - 11:35 WOMEN CAREER IN ACADEMIA

Panel Discussion II

10:45 - 11:35 ETHICS IN SCIENCE

Industrial Stage 1

10:45 - 11:10 Zurich Instruments AG
11:10 - 11:35 microfluidic ChipShop GmbH
11:35 - 11:40 Transition Break

Poster Session M2

11:40 - 12:40 Presentations are listed by topic category with their assigned number starting on page 9.

12:40 Adjourn for the Day
Tuesday, October 6

Plenary Speaker Presentation II

08:00 - 09:00
TP-02 COVID-19: CHANGING DIRECTIONS OF A PERFECT STORM
 Herman Goossens
 University of Antwerp, BELGIUM

09:00 - 09:05 Transition Break

Poster Session T3

09:05 - 10:05 Presentations are listed by topic category with their assigned number starting on page 9.

10:05 - 10:20 Coffee Break (offline)

Plenary Speaker Presentation III

10:20 - 11:20
TP-03 CHEMICAL SYNTHESIS ENABLED BY MICROFLUIDICS, AUTOMATION, AND MACHINE LEARNING
 Klavs Jensen
 Massachusetts Institute of Technology, USA

11:20 - 11:25 Transition Break

Poster Session T4

11:25 - 12:25 Presentations are listed by topic category with their assigned number starting on page 9.

12:25 - 12:30 Transition Break

Shark Tank

12:30 - 13:30

13:30 *Adjourn for the Day*
Wednesday, October 7

Keynote Presentation I
08:00 - 08:30
WK-01 LIQUID MARBLE BASED DIGITAL MICROFLUIDICS: FUNDAMENTAL PHYSICS AND APPLICATIONS
Nam-Trung Nguyen, Chin Hong Ooi, Raja Vadivelu, Kamalalayam Rajan Sreejith, Jing Jin, Nhat-Khuong Nguyen, and Pradip Singha
Griffith University, AUSTRALIA

Keynote Presentation II
08:00 - 08:30
WK-02 ENGINEERING AND MEASURING SYSTEMIC MULTI-ORGAN INTERACTIONS FOR TRANSLATIONAL APPLICATIONS
Lor Huai Chong¹, Hsih Yin Tan², Louis Ong¹,², Christopher Tostado², and Yi-Chin Toh¹
¹Queensland University of Technology, AUSTRALIA and ²National University of Singapore, SINGAPORE

Keynote Presentation III
08:00 - 08:30
WK-03 INKJET-BASED HIGH THROUGHPUT SINGLE CELL DISPENSING
Karen C. Cheung
University of British Columbia, CANADA

Keynote Presentation IV
08:00 - 08:30
WK-04 MICROFLUIDICS FOR LIQUID BIOPSY
Chao Liu, Fei Tian, and Jiashu Sun
National Center for Nanoscience and Technology, CHINA

08:30 - 08:35 Transition Break

Poster Session W5
08:35 - 09:35 Presentations are listed by topic category with their assigned number starting on page 9.

09:35 - 09:40 Transition Break

Panel Discussion III
09:40 - 10:30 WOMEN CAREER IN INDUSTRY

Panel Discussion IV
09:40 - 10:30 EARLY ACADEMIC CAREER ADVICE
<table>
<thead>
<tr>
<th>Time</th>
<th>Event</th>
</tr>
</thead>
<tbody>
<tr>
<td>09:40 - 10:05</td>
<td>Industrial Stage 2</td>
</tr>
<tr>
<td>10:05 - 10:30</td>
<td>Newormics</td>
</tr>
<tr>
<td>10:30 - 10:45</td>
<td>Coffee Break (offline)</td>
</tr>
<tr>
<td>10:45 - 11:45</td>
<td>Poster Session W6</td>
</tr>
<tr>
<td>10:45 - 11:45</td>
<td>Presentations are listed by topic category with their assigned number starting on page 9.</td>
</tr>
<tr>
<td>11:45 - 11:50</td>
<td>Transition Break</td>
</tr>
<tr>
<td>11:50 - 12:50</td>
<td>Plenary Speaker Presentation IV</td>
</tr>
<tr>
<td>WP-04</td>
<td>KIN-INSPIRED MATERIALS, SENSORS AND APPLICATIONS</td>
</tr>
<tr>
<td></td>
<td>Zhenan Bao</td>
</tr>
<tr>
<td></td>
<td>Stanford University, USA</td>
</tr>
<tr>
<td>12:50</td>
<td>Adjourn for the Day</td>
</tr>
</tbody>
</table>
Thursday, October 8

Plenary Speaker Presentation V

08:00 - 09:00
ThP-05 BIOCOMPATIBLE INTERFACES OF NANOSTRUCTURED POLYMER FOR ADVANCED MEDICAL AND HEALTHCARE DEVICES
Madoka Takai
University of Tokyo, JAPAN

09:00 - 09:05 Transition Break

Poster Session Th7

09:05 - 10:05 Presentations are listed by topic category with their assigned number starting on page 9.

10:05 - 10:20 Coffee Break (offline)

Panel Discussion V

10:20 - 11:10 PARENTING IN SCIENCE AND WORK LIFE BALANCE

Panel Discussion VI

10:20 - 11:10 PhD AND POSTDOC TRAINING ABROAD

Industrial Stage 3

10:20 - 11:10

11:10 - 11:15 Transition Break

Poster Session Th8

11:15 - 12:15 Presentations are listed by topic category with their assigned number starting on page 9.

Keynote Presentation V

12:15 - 12:45
ThK-05 EMERGING WATER TREATMENT TECHNOLOGIES
Matthew E. Suss, Shada Abu Khalla, Imri Atlas, Eric Guyes, and Amit Shocron
Technion - Israel Institute of Technology, ISRAEL
Keynote Presentation VI

12:15 - 12:45
ThK-06 NANOSTRUCTURES FOR PROBING AND TRANSFECTING LIVING CELLS
Christelle N. Prinz
Lund University, SWEDEN

Keynote Presentation VII

12:15 - 12:45
ThK-07 EXPANDING THE (i)SIMPLE MICROFLUIDIC TOOLBOX TOWARDS ADVANCED DIAGNOSTICS AND THERAPEUTICS
Dries Vloemans, Lorenz Van Hileghem, Henry Orditowski, Dragana Spasic, Francesco Dal Dosso, and Jeroen Lammertyn
KU Leuven, BELGIUM

Keynote Presentation VIII

12:15 - 12:45
ThK-08 SQUEEZING DNA IN NANOCHANNELS
Kevin D. Dorfman
University of Minnesota, USA

12:45 Adjourn for the Day
Friday, October 9

Plenary Speaker Presentation VI

08:00 - 09:00

FP-06 WATER-REPELLENT MATERIALS: A FEW TRICKS WE LEARNT FROM NATURE, AND BEYOND
David Quéré
ESPCI-Paris and École Polytechnique, FRANCE

09:00 - 09:05 Transition

Young Innovator Award and Presentation

09:05 - 09:20 Sponsored by Analytical Chemistry

Pioneers of Miniaturization Lectureship Award and Presentation

09:05 - 09:20 Sponsored by Lab on a Chip and Dolomite

09:40 - 09:45 Transition

Quiz

09:45 - 10:45

10:45 - 11:00 Coffee Break (offline)

Award Ceremony

11:00 - 11:10 CHEMINAS - Young Researcher Poster Awards
11:10 - 11:20 Lab on a Chip - Widmer Poster Award
11:20 - 11:30 IMT Masken und Teilungen AG - Microfluidics on Glass Poster Award
11:30 - 11:40 Sensors (MDPI) - Outstanding Sensors and Actuators, Detection Technologies Poster Award
11:40 - 11:50 NIST and Lab on a Chip - Art in Science Award
11:50 - 12:00 Micromachines (MDPI) and CBMS - Flash Poster Presentation Awards
12:00 - 12:10 Gamification Winners

12:10 Closing Remarks

MicroTAS 2020 Conference Chairs
Séverine Le Gac, University of Twente, THE NETHERLANDS
Hang Lu, Georgia Institute of Technology, USA

12:30 Conference Adjourns
POSTERS

<table>
<thead>
<tr>
<th>Time</th>
<th>Date</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1</td>
<td>Monday, October 5</td>
<td>09:30 - 10:30</td>
<td>3D TEXTILE STRUCTURES FOR ELECTROFLUIDICS</td>
</tr>
<tr>
<td>M2</td>
<td>Monday, October 5</td>
<td>11:40 - 12:40</td>
<td>AN ELECTROKINETIC-BASED LARGE VOLUME CONCENTRATOR FOR ULTRA-LOW ABUNDANT TARGET DETECTION</td>
</tr>
<tr>
<td>T3</td>
<td>Tuesday, October 6</td>
<td>09:05 - 10:05</td>
<td>CHARACTERIZING SINGLE SINONASAL SQUAMOUS CELL CARCINOMA USING DI-ELECTROPHORESIS AND ELECTROROTATION</td>
</tr>
<tr>
<td>Th7</td>
<td>Thursday, October 8</td>
<td>09:05 - 10:05</td>
<td>CONTROLLING AC-ELECTROOSMOTIC VORTEX FLOWS BY SHAPING THE CHANNEL CROSS SECTION</td>
</tr>
<tr>
<td>W5</td>
<td>Wednesday, October 7</td>
<td>08:35 - 09:35</td>
<td>DIELECTROPHORETIC EQUILIBRIUM OF COMPLEX PARTICLES</td>
</tr>
</tbody>
</table>
ELECTROKINETIC WALL EFFECT MECHANISMS AND APPLICATIONS
Jason P. Beech, Bao Dang Ho, Oskar Ström, and Jonas O. Tegenfeldt
Lund University, SWEDEN

N-DEP ENHANCED LATERAL DISPLACEMENT IN DLD DEVICE TO FOR HIGH EFFICIENT CELL SORTING
Chia-Hsin Chang and Fan-Gang Tseng
National Tsing Hua University, TAIWAN

a - Fundamentals in Microfluidics and Nanofluidics

Droplet Microfluidics

M1-102.a A NOVEL PARTITIONING PLATFORM TOWARDS THE LOW-COST, RAPIDLY DEPLOYABLE, DIGITAL DETECTION OF SARS-COV-2
Maria Alvarez Amador, Yuhe Jiang, Ling Li, and Eric Brouzes
Stony Brook University, USA

M1-103.a DEFORMABILITY-BASED MICROFLUIDIC MICRODROPLET SORTING AS A SCREENING METHOD FOR SINGLE AGAROLYTIC BACTERIAL CELLS
Mikihisa Muta1, Kai Saito1, Ryo Iizuka1, Wataru Kawakubo2, Dong H. Yoon2, Mei Ito1, Yuji Hatada1, Tetsushi Sekiguchi2, Shuichi Shoji2, and Takashi Funatsu1
1University of Tokyo, JAPAN, 2Waseda University, JAPAN, and 3Saitama Institute of Technology, JAPAN

M1-104.a ENDOTHELIAL-CELL SPROUTING ASSAY WITH MULTIPLE INTERACTING SEEDS AS A PLATFORM TO STUDY ANGIogenesis
Katarzyna Rojek and Jan Guzowski
Polish Academy of Sciences, POLAND

M1-105.a IMAGE ANALYSIS EXPLORATION: CASE FOR DROPLET MICROFLUIDICS
Immanuel Sanka, Simona Bartkova, Pille Pata, Olli-Pekka Smolander, and Ott Scheler
Tallinn University of Technology, ESTONIA

M1-106.a PARALLEL DROPLET GENERATION OF LINEAR CONCENTRATION GRADIENT FOR ANTIBIOTIC SUSCEPTIBILITY TESTING OF E.COLI O157:H7
Jae Seong Kim1, Byungjin Lee1, Heon-Ho Jeong2, Dong-Ho Kim1, Kyoung Han Kim1, and Chang-Soo Lee1
1Chungnam National University, KOREA and 2Chonnam National University, KOREA

M1-107.a TOWARDS HIGH-THROUGHPUT SCREENING FOR DRUG DISCOVERY IN MULTI SPLITTING AND MERGING SYSTEM USING MICROVALVES
Sagar Narhari Agnishoti1, Mohammad Reza Raveshi1, Rajneesh Bhardwaj2, and Adrian Neild1
1Monash University, AUSTRALIA and 2Indian Institute of Technology, Bombay, INDIA

M2-202.a A SAMPLE INJECTION INTERFACE OF MASS SPECTROMETRY UTILIZING FEMTOLITER-DROPLET SHOOTER BY MICROFLUIDICS
Yuto Takagi1, Yutaka Kazoe1, and Takehiko Kitamori1,3
1University of Tokyo, JAPAN, 2Keio University, JAPAN, and 3National Tsing Hua University, TAIWAN

M2-203.a DROPLET GENERATOR IN A SINGLE TUBE FOR DNA AMPLIFICATION
Shaw-Hwa Parng, Ping-Jung Wu, Yu-Yin Tsai, Ruey-Shyan Hong, and Su-Jan Lee
Industrial Technology Research Institute, TAIWAN

M2-204.a FACILE EVAPORATION INDUCED ON SURFACE MANIPULATION OF AQUEOUS DROPLETS AND IT’S APPLICATION IN BIOLOGICAL CARGO TRANSPORT
Butunath Majhy and Ashis K.U. Sen
Indian Institute of Technology, Madras, INDIA
M2-205.a MANIPULATION OF DROPLETS IN NON-NEWTONIAN FLUID
Shamik Hazra1, Sushanta K. Mitra2, and Ashis Kumar Sen1
1Indian Institute of Technology, Madras, INDIA and 2University of Waterloo, CANADA

M2-206.a PERIODIC CONCENTRATION-POLARIZATION BASED FORMATION OF BIOMOLECULE PRECONCENTRATION
Sinwook Park, Ramadan Abu-Rjal, Keren Buchnik, Yechezkel Kashi, and Gilad Yossifon
Technion – Israel Institute of Technology, ISRAEL

T3-302.a ACTIVE GENERATION OF FEMTOLITER DROPLET IN MICROFLUIDICS USING TRADITIONAL INKJET NOZZLE
Dege Li1, Yi Cao1, Bingfang Huang1, Chao Zheng1, Yonghong Liu1, and Yanzhen Zhang12
1China University of Petroleum (East China), CHINA and 2Swinburne University of Technology, AUSTRALIA

T3-303.a DROPLET GENERATORS COMMUNICATION FOR A HIGH THROUGHPUT PRODUCTION
Ilyesse BIHI, Pierre Gelin, and Wim De Malsche
Vrije Universiteit Brussel, BELGIUM

T3-304.a FAST DROPLET ENRICHMENT USING SPONTANEOUS EMULSIFICATION
Piangrawee Santivongskul, Mao Fukuyama, and Akihide Hibara
Tohoku University, JAPAN

T3-305.a MICRO-MAGNETIC-TWEEZERS: A TOOL FOR BIOSEPARATION IN SUB-NANOLITER DROPLETS
Simon Dumas, Mathilde Richerd, Marco Serra, and Stéphanie Descroix
Institut Curie, FRANCE

T3-306.a PRODUCTION OF MONODISPERSE CAPSULES FOR CONTROLLED SPORE RELEASE
Iwona Ziemecka1, Ilyesse Bihi1, Pierre Gelin1, Guy V.A.N. Assche1, Suzy Vaupre2, Roberto Teixeira2, Dominique Maes1, and Wim D.E. Malsche1
1Vrije Universiteit Brussel, BELGIUM and 2Devan Chemicals NV, BELGIUM

T4-402.a AUTOMATED MICROFLUIDIC DROPLET GENERATION AND MERGING TO RESOLVE DYNAMICS OF UPTAKE AND SECRETION IN WHITE ADIPOSE TISSUE (WAT)
NA Nan Shi, Md Moniruzzaman, Yvette Kayirangwa, and Christopher J. Easley
Auburn University, USA

T4-403.a DROPLET MICROFLUIDIC BASED METHOD FOR IN-SITU CALIBRATION AND DETERMINATION OF RECOVERY RATE OF MICRODIALYSIS
Gareth W.H. Evans1, Jameelah Salahuddin1, Wahida T. Bhuiyan1, Brett Warren2, and Xize Niu12
1University of Southampton, UK and 2SouthWestSensor Ltd., UK

T4-404.a GENERATION OF AQUEOUS-DROplet-Filled HYDROgel FIBERS AS ORGANoids CARRIES USING ALL-IN-WATER MICROFLUIDIC SYSTEM
Hui Wang, Hai-Tao Liu, Ya-Qing Wang, Meng-Qian Zhao, Wen-Wen Chen, and Jian-Hua Qin
Chinese Academy of Sciences, CHINA

T4-405.a MICROFLUIDIC GENERATION OF WATER-IN-WATER-IN-WATER(-IN-WATER) DOUBLE AND TRIPLE EMULSIONS
Morteza Jeyhani12, Risavarshni Thevakumaran12, Niki Abbasi12, Dae Kun Hwang12, and Scott S. H. Tsai12
1Ryerson University, CANADA and 2St. Michael’s Hospital, CANADA

T4-406.a REAL-TIME IMAGE-BASED DROPLET MEASUREMENT
Sepehr Elahi1, Ali Kalantarifard1, Fatemeh Kalantarifard2, and Caglar Elbuke3
1Bilkent University, TURKEY, 2Bogazici University, TURKEY, and 3University of Oulu, FINLAND
W5-502.a BINARY CONSTRICIONS, TIP ELONGATION AND DUTY CYCLE: SHAPE BASED MECHANISMS FOR LABEL-FREE DETECTION IN DROPLETS
Afreen Fatima and Amar Basu
Wayne State University, USA

W5-503.a DROPLET MICROFLUIDIC PLATFORM FOR INTRACELLULAR PHASE SEPARATION EXPERIMENTS
Katherine Chan, Maryam Navi, Jennifer Kieda, and Scott Tsai
Ryerson University, CANADA

W5-504.a GENERATION OF COMPLEX EMULSIONS USING MONOLITHIC, DUAL-MATERIAL 3D-PRINTED MICROFLUIDIC DEVICES
Jin Li, Pantelitsa Dimitriou, Oliver Castell, and David Barrow
Cardiff University, UK

W5-505.a MOLECULAR REORIENTATION OF CHOLESTERIC DROPLET BY SENSITIVE STRAIN FOR FLEXIBLE CURVATURE SENSING
Shuting Xie, Mingliang Jin, Ruizhi Yang, Guofu Zhou, and Lingling Shui
South China Normal University, CHINA

W5-506.a SELF-EMULSIFICATION IN LIQUID CRYSTAL DROPLETS
Ruizhi Yang, Yueming Deng, Shuting Xie, Qi An, and Lingling Shui
South China Normal University, CHINA

W6-602.a COMPUTER VISION APPLIED TO MEMBRANE DISPLACEMENT TRAP ARRAYS FOR AUTOMATED DROPLET CONTROL AND MANIPULATION
Michael Yeh1,2, Jason Harriot1, Supriya Padmanabhan1, and Don L. DeVoe1
1University of Maryland, College Park, USA and 2National Cancer Institute, USA

W6-603.a DROPLET SQUEEZING FOR HIGHLY EFFECTIVE GENE DELIVERY INTO HUMAN T LYMPHOCYTES
Byeongju Joo, Hasung Lee, Seung Gyu Yun, and Aram Chung
Korea University, KOREA

W6-604.a GENERATION OF SPHEROIDS USING AN AQUEOUS TWO-PHASE SYSTEM DROPLET MICROFLUIDIC PLATFORM
Jennifer Kieda, Morteza Jeyhani, Maryam Navi, Katherine Chan, and Scott S.H. Tsai
Ryerson University, CANADA

W6-605.a MONITORING OF AMMONIA IN NATURAL WATERS USING A VERSATILE, PROGRAMMABLE DROPLET MICROFLUIDIC PLATFORM
Wahida T. Bhuiyan1, Evanthia Papadoupoulou2, Sharon Coleman2, Matthew Pearson2, Adrian M. Nightingale1, Gareth Evans1, and Xize Niu1
1University of Southampton, UK and 2SouthWestSensor Ltd., UK

W6-606.a SIMULTANEOUS DROPLET FORMATION VIA GRAVITY-INDUCED FLOW WITH IN-SERIES DROPLET GENERATING JUNCTIONS
Khashayar R. Bajgiran, Riad Elkhanoufi, James A. Dorman, and Adam T. Melvin
Louisiana State University, USA

Th7-702.a CONTINUOUS GENERATION OF CELL-LADEN MICROGELS THROUGH DETERMINISTIC LATERAL DISPLACEMENT ARRAYS
Naotomo Tottori and Takasi Nisisako
1Kyushu University, JAPAN and 2Tokyo Institute of Technology, JAPAN
Th7-703.a DROPLET-ASSISTED PHASE SEPARATION BY INTEGRATED SILICON ELECTROSPRAY NANO-EMITTER FOR NEUROCHEMICAL SENSING
Yan Zhang, Weihua Shi, Insu Park, Sungho Kim, Christopher Brenden, Hrishikesh Iyer, Prasoon Jha, Rashid Bashir, and Yurii Vlasov
University of Illinois, Urbana-Champaign, USA

Th7-704.a HIGH-THROUGHPUT SORTING OF NANOLITER DROPLETS USING AN ELECTRODE ARRAY WITH A SLANTED MICROCHANNEL
Mun Hong Loo1, Yuta Nakagawa1, Akihiro Isozaki1,2, and Keisuke Goda1,3,4
1University of Tokyo, JAPAN, 2Kanagawa Institute of Industrial Science and Technology, JAPAN, 3University of California, Los Angeles, USA, and 4Wuhan University, China

Th7-705.a MONITORING OF REACTION KINETICS THROUGH THE SYNCHRONIZED RELEASE OF LIPOSOMAL CARGO IN DOUBLE EMULSIONS
Ariane Stucki, Petra Jusková, Nicola Nuti, and Petra S. Dittrich
ETH Zürich, Basel, SWITZERLAND

Th7-706.a SPACE-FILLING OPEN MICROFLUIDICS FOR DROPLET COLLECTION: GENERALIZED DESIGN OF FRACTAL HYPERBRANCHED CHANNELS
Hiroyuki Kai
Tohoku University, JAPAN

Th8-801.a A MICROFLUIDIC MAGNETIC EXTRACTOR FOR MAGNETIC BEAD SEPARATION IN DROPLETS
Junyue Chen1,2, Weiliang Shu1, Ying Tan2, Hongtao Feng1, Yimo Yan2, and Yan Chen1
1Chinese Academy of Sciences, CHINA and 2Tsinghua University, CHINA

Th8-802.a CONTROLLED ACTUATION OF SELF-PROPELLED DROPLETS
Loic Coudron, Clement Lemenu, Kevin Lemaine, Daniel McCluskey, Christabel Tan, Ian Munro, Arne E. Holdo, Mark Tracey, and Ian Johnston
University of Hertfordshire, UK

Th8-803.a ELECTROCOALESCENCE OF MICRODROPLETS WITH ACTIVE PAIRING
Kaijian Zhu1,2, Wen Yue1, and Dahai Ren2
1China University of Geosciences, CHINA and 2Tsinghua University, CHINA

Th8-804.a HYBRID MICROGELS PRODUCED VIA DROPLET MICROFLUIDICS FOR NANOPARTICLE ENCAPSULATION AND DRUG DELIVERY
Bruna G. Carvalho1, Thiago B. Taketa1, Bianca B.M. Garcia2, Sang W. Han2, and Lucimara G. de la Torre1
1University of Campinas, BRAZIL and 2São Paulo Federal University, BRAZIL

Th8-805.a OPTICAL ACCESSIBILITY IMPROVEMENTS FOR THE CHARACTERIZATION OF THE NANOPEDE
Edo A.G. de Kruiff1, Chris L. Kennedy2, Corentin B.M. Tregouet3, Alfons van Blaaderen2, Jan C.T. Eijkel1, and Mathieu Odijk1
1University of Twente, THE NETHERLANDS, 2Utrecht University, THE NETHERLANDS, and 3University of Rennes 1, FRANCE

Th8-806.a SPRING-POWERED PORTABLE SYRINGE PUMP THAT PROVIDES CONSTANT FLOW RATE
Won Han and Joong Ho Shin
Pukyong National University, KOREA
Digital Microfluidics

M2-207.a ALL-IN-ONE DIGITAL MICROFLUIDIC SYSTEM FOR MOLECULAR DIAGNOSIS BASED ON THE LOOP-MEDIATED ISOTHERMAL AMPLIFICATION
Siyi Hu\(^1\), Chao Yang\(^2\), Yuhua Jie\(^2\), Haifei Yang\(^2\), Yang Su\(^2\), and Hanbin Ma\(^1\)
\(^1\)Chinese Academy of Sciences, CHINA and \(^2\)ACXEL TECH LTD, UK

T3-307.a OPEN SURFACE DROPLET MANIPULATION AND MIXING BY FERROFLUID INSTABILITIES
Vahid Nasirimarekani\(^1\), Fernando Benito-Lopez\(^1\), and Lourdes Basabe-Desmonts\(^2\)
\(^1\)University of the Basque Country, SPAIN and \(^2\)Basque Foundation of Science, IKERBASQUE, SPAIN

Centrifugal Microfluidics

M1-108.a RELIABLE LIQUID REAGENT HANDLING AND ROTATIONAL RELEASE FOR CENTRIFUGAL SAMPLE-TO-ANSWER AUTOMATION
Yao Lu, Darren McAuley, Rohit Mishra, David Boyle, and Jens Ducrée
Dublin City University, IRELAND

M2-208.a VISCOSITY INDEPENDENT FLOW FOR PLANAR CHROMATOGRAPHIC IMMUNOASSAYS BY CENTRIFUGAL MICROFLUIDICS
Daniel M. Kainz\(^1,2\), Susanna M. Früh\(^1,2\), Tobias Hutzenlaub\(^1,2\), Roland Zengerle\(^1,2\), and Nils Paust\(^1,2\)
\(^1\)University of Freiburg, GERMANY and \(^2\)Hahn-Schickard, GERMANY

T4-407.a AUTOMATED CELL CULTURE AND ACTIVATION ASSAY USING CENTRIFUGAL MICROFLUIDIC PLATFORM
Lidija Malic\(^1\), Liviu Clime\(^1\), Jamal Daoud\(^1\), Abdelrahman Elmanzalawy\(^1\), Ljubica Lukic\(^1\), Huailo Lee\(^2\), Yuh-Tyng Tsai\(^2\), Pei-Shin Jiang\(^2\), and Teodor Veres\(^1\)
\(^1\)National Research Council, CANADA and \(^2\)Industrial Technology Research Institute, TAIWAN

W5-507.a AUTOMATED LIBRARY PREPARATION FOR NEXT GENERATION SEQUENCING OF IMMUNOGLOBULIN GENE REARRANGEMENTS BY CENTRIFUGAL MICROFLUIDICS
Jacob F. Hess, Michaela Kotrová, Silvia Calabrese, Tobias Hutzenlaub, Roland Zengerle, Monika Brüggemann, and Nils Paust
Hahn-Schickard, GERMANY

W6-607.a FULLY INTEGRATED LTA ASSAY ON CENTRIFUGAL MICROFLUIDIC DEVICE
Jungmin Kim, Chi-Ju Kim, Jonathan Sabaté del Rio, and Yoon-Kyong Cho
Ulsan National Institute of Science & Technology (UNIST), KOREA

Th7-707.a PNEUMATICALLY CONTROLLED DROPLET GENERATION ON A CENTRIFUGAL MICROFLUIDIC PLATFORM
National Research Council, CANADA

Th8-807.a PURIFICATION OF DNA FRAGMENTS USING PNEUMATIC CONTROL COUPLED TO CENTRIFUGAL MICROFLUIDICS
Daniel Brassard, Jimin Guo, Maxence Mounier, Jason Ferreira, Mojra Janta-Polczynski, and Teodor Veres
National Research Council, CANADA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-109.a</td>
<td>RAPID MUTINODAL ACOUSTIC TRAPPING OF EXTRACELLULAR VESICLES FOR DOWNSTREAM MASS SPECTROMETRY ANALYSIS</td>
<td>Axel Broman, Lotta Happonen, Frida Palm, Oonagh Shannon, Johan Malmström, and Thomas Laurell</td>
<td>Lund University, SWEDEN</td>
</tr>
<tr>
<td>M2-209.a</td>
<td>REDUCING TAYLOR DISPERSION WITH ACOUSTIC STREAMING</td>
<td>Pierre Gelin, Dominique Maes, and Wim De Malsche</td>
<td>Vrije Universiteit Brussel, BELGIUM</td>
</tr>
<tr>
<td>T3-308.a</td>
<td>A SINGLE CELL MANIPULATION TOOL BASED ON GIGAHERTZ ACOUSTIC-STREAMING TWEEZERS</td>
<td>Ke Jin, Yang Yang, Yang Bai, Wei Wei, and Xuexin Duan</td>
<td>State Key Laboratory of Precision Measuring Technology & Instruments, CHINA</td>
</tr>
<tr>
<td>T4-408.a</td>
<td>ACOUSTIC DIFFERENTIAL EXTRACTION WITH REAL-TIME FEEDBACK FOR ENHANCED SPERM CELL CAPTURE FROM SEXUAL ASSAULT KITS</td>
<td>Sadie M. Kiendzior, Vahid Farmehini, Nathan Swami, and James P. Landers</td>
<td>University of Virginia, USA</td>
</tr>
<tr>
<td>W5-508.a</td>
<td>BINARY PARTICLE ACOUSTOPHORESIS SEPARATION BASED ON NODAL POSITION ADJUSTMENT THROUGH PDMS WALL</td>
<td>Sinan Yigit¹, Song-I Han², Younghak Cho³, and Arum Han²</td>
<td>¹Necmettin Erbakan University, TURKEY, ²Texas A&M University, USA, and ³Seoul National University of Science & Technology, KOREA</td>
</tr>
<tr>
<td>W6-608.a</td>
<td>FREQUENCY TUNABLE LABEL-FREE SURFACE ACOUSTIC WAVE-BASED FLOW SENSOR</td>
<td>Aurore Quelennec, Jason J. Gorman, and Darwin R. Reyes</td>
<td>National Institute of Standards and Technology (NIST), USA</td>
</tr>
<tr>
<td>Th7-708.a</td>
<td>MOTILITY-BASED SPERM SELECTION USING ACOUSTOFLUIDICS</td>
<td>Junyang Gai, RezaNosrati, and Adrian Neild</td>
<td>Monash University, AUSTRALIA</td>
</tr>
<tr>
<td>Th8-808.a</td>
<td>QUANTIFYING THE ACOUSTIC FIELD IN A MICROCHANNEL USING MICROSWIMMERS AS MEASUREMENT PROBES</td>
<td>Minji Kim¹, Rune Barnkob², and J. Mark Meacham¹</td>
<td>¹Washington University, St. Louis, USA and ²Technical University of Munich, GERMANY</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-110.a</td>
<td>MULTILEVEL PASSIVE MICROFLUIDICS FOR ELECTROCHEMICAL BIOSENSORS</td>
<td>Pooya Azizian¹, Adrián Ortega¹, Jordi Ricart¹, Jasmina Casals-Terré², and Joan M. Cabot³</td>
<td>¹Leitat Technological Center, SPAIN and ²Technical University of Catalonia, SPAIN</td>
</tr>
<tr>
<td>M2-210.a</td>
<td>MULTISCALE MODELLING AND COMPUTATIONAL DESIGN OF FLUID FLOW AND MASS TRANSPORT IN 3D PRINTED LAB-ON-CHIPS</td>
<td>Agnese Piovesan, Bart Dequeker, Ruben Dochy, Cesar Parra Cabrera, Rob Ameloot, Pieter Verbaten, and Bart Nicolai</td>
<td>KU Leuven, BELGIUM</td>
</tr>
</tbody>
</table>
T3-309.a 3D PRINTED AXISYMMETRIC FLOW-FOCUSBING DEVICE USING FUSED SILICA CAPILLARY TUBES
Keisuke Sugahara and Shoji Takeuchi
University of Tokyo, JAPAN

T3-310.a OPEN-CHANNEL CAPILLARY TREES AND CAPILLARY PUMPING
Jing J. Lee, Jean Berthier, Kathleen Kearney, Erwin Berthier, and Ashleigh B. Theberge
University of Washington, USA

T4-409.a 3D-PRINTING AND COMPUTATIONAL FLUID DYNAMICS 'MEET' PAPER-BASED MICROFLUIDICS FOR ENHANCED FLOW CONTROL IN DIFFUSIVE SENSORS
Joan-Antoni López, Pau Fernandez, Pouya Mehdrel, and Jasmina Casals
Universitat Politècnica de Catalunya, SPAIN

T4-410.a POLY(N-ISOPROPYL ACRYLAMIDE) COATING OF MICROCHANNELS AND BACTERIAL SAMPLE LOADING VIA CAPILLARY-DRIVEN FLOW
Sammer-ul Hassan, Steve Carter, Sehaj Singh, Edward Dyson, Stephen Rimmer, and Xunli Zhang
University of Southampton, UK

W5-509.a CAPILLARY-DRIVEN LOADING OF HRICFP EXPRESSING ESCHERICHIA COLI INTO MICROCHANNELS
Ahmed Donia, Salma Saeed, Aamira Tariq, Zobia Noreen, Habib Bokhari, Xunli Zhang, and Sammer-ul Hassan
Comsats University Islamabad, PAKISTAN

W5-510.a PASSIVE FLOW CONTROL IN A LAMINATION-BASED CAPILLARY-DRIVEN MICROFLUIDIC DEVICE
Ilhoon Jang and Charles S. Henry
Colorado State University, USA

W6-609.a DIGITAL MANUFACTURING OF FUNCTIONAL AUTONOMOUS CAPILLARIC CIRCUITS USING HYDROPHILIC RESINS AND A 3D PRINTER
Ahmad Sohrabi Kashani, Vahid Karamzadeh, Oriol Ymbern Llorens, Andy Ng, and David Juncker
McGill University, CANADA

W6-610.a SIGNAL AMPLIFICATION IN A LATERAL FLOW ASSAY ENABLED BY A CAPILLARY VALVE AND SELF-ACTUATING ELEVATOR VALVE
Caitlin E. Anderson1, Joshua D. Bishop1, Andrew K. Miller1, Benjamin D. Grant1, Toan Huynh2, David M. Cate1, Bernhard H. Weigl1, and Kevin P. Nichols1
1Global Health Labs, USA and 2Intellectual Ventures - Global Good, USA

Th7-709.a INCORPORATING FLOW CONTROL FUNCTIONALITY IN MICROFLUIDIC PAPER-BASED ANALYTICAL DEVICES USING PLASMA PROCESSES
Nikhil Raj, Victor Breedveld, and Dennis W. Hess
Georgia Institute of Technology, USA

Th7-710.a THREAD AS A PRECISE SAMPLING AND DELIVERY PLATFORM FOR IMPLANTABLE OR INGESTIBLE APPLICATIONS
Hojatollah Rezaei Nejad, Aydin Sadeqi, and Sameer Sonkusale
Tufts University, USA

Th8-809.a LIQUIDATOMIZATION IN PERIODIC ELECTRO-PULSATING MODE, INDIRECT MEASUREMENT OF THE ELECTRIC FIELD ON THE OSCILLATING MENISCUS
Antonio J. Hijano-Reyes1, Ignacio G. Loscertales1, and Francisco J. Higuera-Antón2
1Universidad de Malaga, SPAIN and 2Universidad Politecnica de Madrid, SPAIN
a - Fundamentals in Microfluidics and Nanofluidics
Nanofluidics/Nanofluidic Phenomena

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-111.a</td>
<td>GENERATION OF NANOMETER-SCALE GEOMETRICAL GAS-LIQUID INTERFACES IN HYDROPHILIC/HYDROPHOBIC PATTERNED NANOCHANNELS</td>
<td>Hiroto Kawagishi, Shuichi Kawamata, and Yan Xu</td>
<td>Osaka Prefecture University, JAPAN</td>
</tr>
<tr>
<td>M2-211.a</td>
<td>INTEGRATED IONIC ELECTRONICS BASED ON HORIZONTALLY-ALIGNED CARBON NANOTUBES</td>
<td>Ran Peng¹, Yueyue Pan¹, Zhi Li², Shuailong Zhang¹, Aaron R. Wheeler¹, Xiaowu (Shirley) Tang², and Xinyu Liu¹</td>
<td>University of Toronto, CANADA and University of Waterloo, CANADA</td>
</tr>
<tr>
<td>T3-311.a</td>
<td>INTEGRATED MICRO- AND NANOFLUIDIC DEVICES FOR REAL-TIME MONITORING OF HEPATITIS B VIRUS CAPSID ASSEMBLY</td>
<td>Michael P. Kappler, Panagiotis Kondylis, Caleb Starr, Adam Zlotnick, and Stephen C. Jacobson</td>
<td>Indiana University, USA</td>
</tr>
<tr>
<td>T4-411.a</td>
<td>LATERAL MIGRATION OF DOUBLETS IN UNTREATED WHOLE BLOOD</td>
<td>Jian Zhou and Ian Papautsky</td>
<td>University of Illinois, Chicago, USA</td>
</tr>
<tr>
<td>W5-511.a</td>
<td>NANOFLUIDIC DEVICE FOR SURFACE CHARGE MEASUREMENT OF NANOPARTICLES USING TUNABLE ELECTROSTATIC LANDSCAPE</td>
<td>Seyed Imman Hosseini, Zezhu Liu, Walter Reisner, and Sara Mahshid</td>
<td>McGill University, CANADA</td>
</tr>
<tr>
<td>W6-611.a</td>
<td>TRANSPORT OF VISCOUS FLUID THROUGH MICRO- AND NANOPOROUS MEDIA</td>
<td>Md Minhajul Islam and D. Jed Harrison</td>
<td>University of Alberta, CANADA</td>
</tr>
<tr>
<td>Th8-810.a</td>
<td>A SENSE-REACT-SENSE NANOFLUIDIC SYSTEM FOR PERFORMING REACTIONS ON SINGLE VIRUS CAPSIDS</td>
<td>Mi Zhang, Caleb Starr, Zhongchao Zhao, Adam Zlotnick, and Stephen C. Jacobson</td>
<td>Indiana University, USA</td>
</tr>
</tbody>
</table>

a - Fundamentals in Microfluidics and Nanofluidics
Modeling/Numerical Simulation

<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-112.a</td>
<td>COMPUTATIONAL FLUID DYNAMIC SIMULATION AT MICRO-SCALE STENOSIS FOR MICROFLUIDIC THROMBOSIS MODEL CHARACTERIZATION</td>
<td>Yunduo C. Zhao, Parham Vatankhah, Tiffany Goh, and Lining A. Ju</td>
<td>University of Sydney, AUSTRALIA</td>
</tr>
<tr>
<td>M1-113.a</td>
<td>SHAPE DEPENDENT MODEL-BASED APPROACH FOR ELASTIC MODULI ESTIMATION OF BIOLOGICAL CELLS IN FLOW</td>
<td>Gangadhar Eluru, Ramya Shekhar, and Sai S. Gorthi</td>
<td>Indian Institute of Science, INDIA</td>
</tr>
<tr>
<td>M2-212.a</td>
<td>COMPUTATIONAL MODELLING OF FLOW AND DRUG TRANSPORT IN A MICROFLUIDIC DEVICE FOR SPHEROID CULTURES</td>
<td>Sina Kheiri, Eugenia Kumaicheva, and Edmond W.K. Young</td>
<td>University of Toronto, CANADA</td>
</tr>
</tbody>
</table>
M2-213.a SURFACE TEXTURE MODULATES WALL SLIP IN MICROFLUIDIC FLOWS
Siyu Chen and Joe Lo
University of Michigan, Dearborn, USA

T3-312.a CONCENTRATION GRADIENTS INSIDE MICRODROPLETS
Christian F. Chamberlayne, Juan G. Santiago, and Richard N. Zare
Stanford University, USA

T3-313.a TOWARD THE CHARACTERIZATION OF COMPLEX MICROVESSEL NETWORKS VIA IN-LINE FLOW RATE SENSING
Michael Daniele1,2, Vladimir A. Pozdin3, Patrick D. Erb1,2, and McKenna Downey1
1North Carolina State University, USA, 2University of North Carolina, Chapel Hill, USA, and
3Florida International University, USA

T4-412.a CREATIVE SHAPING OF 2D FLOW AND CONCENTRATION PROFILES IN MICROFLUIDIC CHAMBERS
Etienne Boulais and Thomas Gervais
Polytechnique Montréal, CANADA

W5-512.a ENHANCING MICROMIXING CAPABILITIES OF FLEXIBLE FLUOROPOLYMER MICROCAPILLARY FILMS WITH 3D PRINTED TEMPLATES: A COMPUTATIONAL FLUID DYNAMICS ANALYSIS
Kirandeep K. Gill1, Patrick Hester2, Pedro Estrela1, and Nuno M. Reis1
1University of Bath, UK and 2Lamina Dielectrics Ltd, UK

W6-612.a NUMERICAL SIMULATION AND EXPERIMENTAL ANALYSIS OF INERTIAL CELL FOCUSING IN A CONTRACTION-EXPANSION ARRAY (CEA) MICROCHANNEL
Ali C. Atik, Ender Yıldırım, and Haluk Külah
Middle East Technical University, TURKEY

Th7-711.a 2D PHASE-FIELD SIMULATION AND EXPERIMENTAL VALIDATION OF DROPLET FORMATION IN A FLOW-FOCUSING JUNCTION
Ali C. Atik, Ender Yıldırım, and Haluk Külah
Middle East Technical University, TURKEY

Th7-712.a NUMERICAL MODELING OF SEQUENTIAL SEGMENTATION FOR ENHANCEMENT OF MICROMIXING
Ibragim Abu Dagga and Mohamed Abdelgawad
American University of Sharjah, UAE

Th8-811.a BEHAVIOR OF PHASE CHANGE SLURRY IN A MICROCHANNEL
Vikram Soni, Hannah McPhee, Sepehr Saber, Jason Riordon, and David Sinton
University of Toronto, CANADA

Th8-812.a RESIDENCE TIME DISTRIBUTION IN MICROMIXERS: SCALE-UP EFFECTS
Harrison S. Santana1 and João L. Silva Jr.2
1University of Campinas, BRAZIL and 2Federal University of ABC, BRAZIL
<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| M1-114.a | HIGH-THROUGHPUT SPERM SORTING BY A FLAT RHEOTAXIS MICROFLUID DEVICE | Suei-Shen Wang and Fan-Gang Tseng
National Tsing Hua University, TAIWAN |
| M2-214.a | TO STICK OR NOT TO STICK: PREDICTING PARTICLE CAPTURE ON A SURFACE IN A MICROCHANNEL | Donatien Mottin1,2, Florence Razan2, Frédéric Kanoufi3, and Marie-Caroline Jullien1
1University of Rennes, FRANCE, 2École Normale Supérieure de Rennes, FRANCE, and
3Université de Paris, FRANCE |
| T3-314.a | IMPROVED UNDERSTANDING OF PARTICLE MIGRATION IN SHEAR THINNING VISCOELASTIC FLUID | Shamik Hazra1, Sushanta K. Mitra2, and Ashis Kumar Sen1
1Indian Institute of Technology, Madras, INDIA and 2University of Waterloo, CANADA |
| T4-413.a | CONCENTRATION-DEPENDENT LOSS OF CHARGED ANALYTES IN PAPERFLUIDIC DEVICES | Siddhant Jaitpal1, Priyanka Naik1, Shashwat Banerjee2, and Debjani Paul1
1Indian Institute of Technology, Bombay, INDIA and
2Maharashtra Institute of Medical Education and Research Medical College, INDIA |
| W5-513.a | DIFFERENTIAL 3D-VISCOELASTIC FOCUSING OF PARTICLES IN A RECTANGULAR MICROFLUIDIC CHANNEL | Ludovica Barilla, Jian Zhou, Zhangli Peng, and Ian Papautsky
University Illinois, Chicago, USA |
| W6-613.a | DNA CONCENTRATION WAVE FORMATION IN PILLAR ARRAYS | Oskar E. Ström, Jason P. Beech, and Jonas O. Tegenfeldt
Lund University, SWEDEN |
| Th7-713.a | EFFECT OF DEAN FLOWS ON SUB-MICRON PARTICLES IN LOW ASPECT RATIO MICROCHANNELS – ANALYSIS OF DFF | Suhanya Duraiswamy1 and Lin Yue Lanry Yung2
1Indian Institute of Technology, Hyderabad, INDIA and 2National University of Singapore, SINGAPORE |
| Th8-813.a | EFFECTS OF PARTICLE SIZE AND FLUID ELASTICITY ON ELASTO-INERTIAL MIGRATION IN SPIRAL CHANNEL | Hua Gao, Jian Zhou, and Ian Papautsky
University of Illinois, Chicago, USA |

b - Micro- and Nanoengineering

Microscale Fabrication, Patterning, and Integration

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Authors</th>
</tr>
</thead>
</table>
| M1-115.b | A VACUUM-DRIVEN MICROFLUIDIC ARRAY FOR MULTISTEP SAMPLE DIGITALIZATION | Jiumei Hu, Liben Chen, Hui Li, Kuangwen Hsieh, Pengfei Zhang, and Jeff Tza-Huei Wang
Johns Hopkins University, USA |
ENGINEERING MULTIPLY ENCAPSULATED MICROGELS FOR CONTROLLED LONG-TERM DRUG DELIVERY
Jing Liu, Cassidy Marie Enloe, Ralph McBride, John S. Oakey, and Katie Li-Oakey
University of Wyoming, USA

FULLY PRINTED PIEZOELECTRIC DEVICES
Marc Alique¹, Marcos Duque², Claudia Delgado¹, Paul Lacharmoise¹, Gonzalo Murillo², and Ana Moya¹
¹*Fundació Eurecat, SPAIN and²IMB-CNMSIC, SPAIN*

NANOPARTICLE DETECTION BY SOLID-STATE NANOPORE INTEGRATED INTO A REUSABLE MICROFLUIDIC DEVICE
Izadora F. Tanimoto¹, Benjamin Cressiot², Jean Roman¹, Nathalie Jarroux¹,³, Gilles Patriarche¹, Bruno Le Pioufle¹, Juan Pelta¹,³, and Laurent Bacri¹,³
¹Université Paris-Saclay, FRANCE, ²CY Cergy Paris Université, FRANCE, and ³Université d’Evry, FRANCE

WHY ARE 3D-PRINTED MOLDS INHIBITING PDMS CURING?
Bastien Venzac, Shanliang Deng, Ziad Mahmoud, Aufried Lenferink, Fabrice Bray, Cees Otto, Christian Rolando, and Séverine Le Gac
University of Twente, THE NETHERLANDS

AN INTEGRATED FLEXIBLE PLATFORM WITH PRINTED ORGANIC ELECTROCHEMICAL AND FIELD-EFFECT TRANSISTORS FOR BIOCHEMICAL SENSING
Silvia Demuru¹, Khalil Chennit², Vincent Noël², Benoit Piro², Giorgio Mattana², and Danick Briand¹
¹*École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and²Paris Diderot University, FRANCE*

ETCHED SILICON µDicer FOR UNIFORM SECTIONING OF TISSUE SAMPLES
Seth C. Cordts, Saisneha Koppaka, Nicolas Castano, and Sindy K.Y. Tang
Stanford University, USA

IN-SITU 3D WRITING OF MICROELECTRODES BASED ON PLASMA-ASSISTED MICROPLATING
Shinya Sakuma, Natsumi Basaki, Keita Ichikawa, and Yoko Yamanishi
Kyushu University, JAPAN

OPTICAL GROWTH AND PATTERNING OF HIGHLY CONDUCTIVE SILVER ON ULTRASMOOTH NANOCELLULOSE PAPER
Yueyue Pan, Sina Kheiri, Zhen Qin, Binbin Ying, Peng Pan, Ran Peng, and Xinyu Liu
University of Toronto, CANADA

ANALYSIS OF INSERTION FORCE OF POLYMER MICroneEDLES WITH HIGH ASPECT RATIO
Yukihiro Kanda, Hiroaki Takehara, and Takanori Ichiki
University of Tokyo, JAPAN

FABRICATION AND CHARACTERIZATION OF 3D MICROFLUIDICS BLADES TO IMPROVE THE CUTTING OF BIOLOGICAL MATERIALS
Stanford University, USA

MECHANICALLY DIRECTING THE DIFFERENTIATION AND ORGANISATION OF STEM CELL TO RECAPITULATE KEY LIVER FUNCTION
Mary Okesola, Tamir S. Rashid, and Ciro Chiappini
King’s College London, UK
T3-318.b PIXELATED CHEMICAL DISPLAYS FOR DRY SURFACE PATTERNING IN INDUSTRIAL ROLL-TO-ROLL PROCESSES
Pierre-Alexandre Goyette and Thomas Gervais
Polytechnique Montréal, CANADA

T4-414.b 2D TO 3D TRANSFORMATION OF PEN-DRAWING
Sumin Lee, Seo Woo Song, Jun Kyu Choe, Na-Hyang Kim, Junwon Kang, Ju-Young Kim, Jiyun Kim, and Sunghoon Kwon
Seoul National University, KOREA

T4-415.b BIOMIMETIC MICROFLUIDIC SYSTEM FOR EVALUATION OF SPERM NAVIGATION BEHAVIOR
Yimo Yan, Qiqi Fu, Boxuan Zhang, and Ran Liu
Tsinghua University, CHINA

T4-416.b FABRICATION AND CHARACTERIZATION OF LITHIUM DOPED NAFION MEMBRANE AND HOLLOW GLASSY CARBON MICRONEEDLE FOR MICROPUMP BASED DRUG DELIVERY
Arkaprava Datta, Richa Mishra, Shatavisha Biswas, Jhimli S. Manna, Riddhiman Dhar, and Tarun K. Bhattacharyya
Indian Institute of Technology, Kharagpur, INDIA

T4-417.b METAMOLDING: A MODULAR APPROACH TOWARD LARGE SCALE MICROPATTERNING AND MICROFLUIDICS
Jung Y. Han, Pranav Menon, and Don L. DeVoe
University of Maryland, College Park, USA

T4-418.b QUANTITATIVE DESIGN STRATEGY OF THE RESOLUTION AND SCREEN AREA OF MICROFLUIDIC REFLECTIVE DISPLAY WITH SUB-PIXELS
Jumpei Muramatsu and Hiroaki Onoe
Keio University, JAPAN

W5-514.b 360° LIGHT HARVESTING REFLECTOR FULLY INTEGRATED ON MICRFLUIDIC PLATFORM
Filippo Storti1,2, Silvio Bonfadini2, and Luigino Criante2
1Politecnico di Milano, ITALY and 2Istituto Italiano di Tecnologia, ITALY

W5-515.b CELL TRANSPORT WITH ADDRESSABLE MICROCHANNEL FORMED BY GEL ACTUATORS
Hiroki Wada1, Yuha Koike1, Yoshiyuki Yokoyama2, and Takeshi Hayakawa3
1Chuo University, JAPAN and 2Toyama Industrial Technology Research and Development Center, JAPAN

W5-516.b FABRICATION OF ACTIVE MICROFLUIDICS ON GLASS WITH SEMICONDUCTOR GRADE MATERIAL
Boshen Liang1,2, Grim Keulemans1, Brice Eychenne1, Shruti Jambaldinni1, David Cheyns1, Tim Stakenborg1, Veronique Rochus1, Paul Heremans1,2, and Lei Zhang1
1IMEC, BELGIUM and 2KU Leuven, BELGIUM

W5-517.b MICRO-PATTERNED PAPER FOR DRUG TESTING OF 3D TUMOR MODELS
Bisan Samara, Pavithra Sukumar, and Mohammad A. Qasaimeh
New York University Abu Dhabi, UAE

W5-518.b RADIOPAQUE HYDROGEL MICROFIBER FOR ARTERIAL EMBOLIZATION
Naoki Takakura1, Hiroki Ohta2, Teppei Komatsu2, Yuta Kurashina1, Hirotaka J. Okano3, and Hiroaki Onoe1
1Keio University, JAPAN, 2Jikei University School of Medicine, JAPAN, and 3Tokyo Institute of Technology, JAPAN

W6-614.b 3D PRINTED MULTIPURPOSE ATOMIC FORCE MICROSCOPY PROBES
Ayoub Glia, Muhammedin Deliorman, and Mohammad A. Qasaimeh
1New York University Abu Dhabi, UAE and 2New York University, USA
W6-615.b DIGITAL LIGHT PROCESSING-BASED 3D PRINTED HYDROGEL SCAFFOLDS FOR ARTICULAR CARTILAGE TISSUE ENGINEERING
Chuan-Yung Wu¹, Yun-Jie Hao¹, Yu-Chuan Su¹, and Fan-Gang Tseng¹²
¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN

W6-616.b FABRICATION OF HIGHLY ORDERED POLYCAPROLACTONE MICROSPHERES FOR IN VITRO DRUG DELIVERY USING MICROFLUIDIC TECHNOLOGIES
Alejandro Forigua, Laila Abelseth, Stephanie M. Willerth, and Katherine S. Elvira
University of Victoria, CANADA

W6-617.b MICROFLUIDIC DEVICES FOR PLASMA SEPARATION FABRICATED WITH A HIGH RESOLUTION CUSTOM MADE 3D PRINTER
Sandra Garcia-Rey¹, Gregory P. Nordin¹, Lourdes Basabe-Demonts², Fernando Benito-Lopez², and Adam T. Woolley¹
¹Brigham Young University, USA and ²University of the Basque Country, SPAIN

W6-618.b STRETCHABLE INERTIAL MICROFLUIDICS
Hedieh Fallahi, Jun Zhang, Hoang-Phuong Phan, and Nam-Trung Nguyen
Griffith University, AUSTRALIA

Th7-714.b 3D SKIN MICROFLUIDIC PHANTOM FOR IN VITRO WEARABLE TESTING
Genís Rabost-Garcia¹, Oscar Carreras-Gallo¹, Valeria Colmena², Javier Aguilar², Jaime Punter-Villagrassa², Francesc X. Muñoz², Josep Farrè-Lladós¹, and Jasmina Casals-Terré¹
¹Universitat Politècnica de Catalunya, SPAIN, ²Onalabs Inno-hub S.L., SPAIN, and
³Centro Nacional de Microelectrónica, SPAIN

Th7-715.b DNA MICRO-DISK FOR THE EFFICIENT MANAGEMENT OF DNA-BASED DATA STORAGE
Hansol Choi¹, Yeongjae Choi¹, Amos C. Lee¹, Wook Park², and Sunghoon Kwon¹
¹Seoul National University, KOREA and ²Kyung Hee University, KOREA

Th7-716.b FOCUSING OF MICROPARTICLES AT LOW REYNOLDS NUMBERS
Tianlong Zhang¹, Yaxiaer Yalikun¹, Misuzu Namoto¹, Kazanori Okano¹, Yo Tanaka², Ming Li³, and Yoichiroh Hosokawa¹
¹Nara Institute of Science and Technology, JAPAN, ²RIKEN, JAPAN, and ³Macquarie University, AUSTRALIA

Th7-717.b MULTIPLEXED CONVECTION-ENHANCED KINETICS IN MICROTITER PLATES
Iago Pereiro, Anna Fomitcheva Khartchenko, Robert Lovchik, and Govind V. Kaigala
IBM Research Zurich, SWITZERLAND

Th7-718.b TUNING FIELD NON-UNIFORMITY ACROSS MICROCHANNELS FOR FLOW-THROUGH DIELECTROPHORETIC SEPARATIONS
XuHai Huang, Karina Torres-Castro, Walter Varhue, and Nathan S. Swami
University of Virginia, USA

Th8-814.b A GENERALIZED SEMI-AUTOMATED RATIONAL DESIGN OF MICROPILLAR ARRAYS FOR MECHANOBIOLOGICAL STUDIES
Christopher J. Stubbs, Samuel O. Sofela, Navajit S. Baban, and Yong-Ak Song
University of Idaho, USA

Th8-815.b EASILY-FABRICATED FLUOROPOLYMER CHIPS FOR SENSITIVE LONG-TERM ABSORBANCE MEASUREMENT IN DROPLET MICROFLUIDICS
Adrian M. Nightingale¹, Sammer-ul Hassan¹, Kyriacos Makris², Wahida T. Bhuiyan¹, Terry J. Harvey¹, and Xize Niu¹²
¹University of Southampton, UK and ²SouthWestSensor Ltd., UK
Four-dimensional Photonic Micro-Actuators for Microfluidics Applications
Marc del Pozo Puig1, Colm Delaney2, Cees W.M. Bastiaansen1, Dermot Diamond3, Albert P.H.J. Schenning1, and Larisa Florea2
1Eindhoven University of Technology, THE NETHERLANDS, 2Trinity College Dublin, IRELAND, and 3Dublin City University, IRELAND

Nanofaces: An optically transparent nanopaper-based device for cell culture
Siwan Park1, Binbin Ying2, Edmond W.K. Young1, and Xinyu Liu1
1University of Toronto, CANADA and 2McGill University, CANADA

Viscoelastic Focusing of Particles in Triangular Microchannel
Prithviraj Mukherjee, Jian Zhou, and Ian Papautsky
University of Illinois, Chicago, USA

b - Micro- and Nanoengineering
Nanoscale Fabrication, Patterning, and Integration

Polymer-Based Nanofluidic Devices for Resistive-Pulse Sensing of Hepatitis B Virus Capsids
Sheng-Yuan Huang, Mi Zhang, Zhongchao Zhao, Adam Zlotnick, and Stephen C. Jacobson
Indiana University, USA

Aptamer-Based Nanofluidics for the Molecular Detection in Ultra-Small Volume
Jinbin Yang1, Hiroki Kamai1, Yong Wang2, and Yan Xu1
1Osaka Prefecture University, JAPAN and 2Pennsylvania State University, USA

Surface Patterning of Nanofluidic Channels and Its Evaluation Using Streaming Current
Kyojiro Morikawa, Haruki Kazumi, Ryoichi Ohta, and Takehiko Kitamori
University of Tokyo, JAPAN

Coating MOFs on Mammalian Cell for Biomedica Applications
Laura Ha and Dong-Pyo Kim
Pohang University of Science and Technology (POSTECH), KOREA

Selective Electrical Switching of Molecular Motors by Dynamic Virtual Cathode
Kenta Hatataza1, Ryuzo Kawamura2, and Takayuki Hoshino1
1Hirosaki University, JAPAN and 2Saitama University, JAPAN

Development of Fabrication Method for Concentric Connection of Microchannel and Nanochannel
Kyojiro Morikawa, Erina Takeuchi, and Takehiko Kitamori
University of Tokyo, JAPAN

Technological Aspects of Devices for Efficient Electroseparation with Ultra- shallow Nanochannels
Elizaveta Vereshchagina, Yuliya Shakalisava, Aina Suphellen, Sigurd Moe, and Thomas Hankemeier
SINTEF, NORWAY
W5-519.b FABRICATION OF SUB-40-NANOMETER NANO-IN-NANO STRUCTURES IN NANOFLUIDIC CHANNELS
Hiroki Kamai and Yan Xu
Osaka Prefecture University, JAPAN

W5-520.b TWO-PHOTON POLYMERIZATION OF MASTERS FOR POLYMERIC NANOPILLAR REPLICATION
Niamh Geoghegan\(^1\), Colm Delaney\(^1\), Larisa Florea\(^3\), Mark O’ Loughlin\(^1\), and Susan M. Kelleher\(^1\)\(^2\)\(^3\)
\(^1\)University College Dublin, IRELAND, \(^2\)National University of Ireland, Galway, IRELAND, and \(^3\)Trinity College Dublin, IRELAND

W6-619.b INTEGRATION OF GLASS DEFORMATION NANOCHANNEL OPEN/CLOSE VALVES INTO A NANOFILOUSCIC DEVICE AND FEMTO-LITER FLUID OPERATIONS
Hiroki Sano\(^1\), Yutaka Kazoe\(^2\), Kyojiro Morikawa\(^1\), and Takehiko Kitamori\(^1\)\(^3\)
\(^1\)University of Tokyo, JAPAN, \(^2\)Keio University, JAPAN, and \(^3\)National Tsing Hua University, TAIWAN

Th7-719.b NANOFILOUSCIC DEVICE WITH FL-PL DROPLET HANDLING FOR SINGLE MOLECULE CHEMICAL REACTION
Naoya Sawahata, Kyojiro Morikawa, and Takehiko Kitamori
University of Tokyo, JAPAN

Th8-819.b NANOSURFACE MICROFLUIDIC DEVICE EMBEDDED WITH NANO-TRIANGLES FOR SURFACE-ENHANCED RAMAN SPECTROSCOPY AND SURFACE-ENHANCED FLUORESCENT MICROSCOPY
Mahsa Jalali, Sayed Imman Issac Hosseini, Tamer Abdelfattah, Lara Montermini, Sebastian Wachsmann Hugo, Janusz Rak, and Sara Mahshid
McGill University, CANADA

b - Micro- and Nanoengineering

Micropumps, Valves, and Dispensers

M1-121.b A MODULAR MICROFLUIDIC PARALLEL DISPENSING SYSTEM
Dean de Boer, Anke R. Vollertsen, Albert van den Berg, Andries D. van der Meer, and Mathieu Odijk
University of Twente, THE NETHERLANDS

M2-222.b AUTOMATED BLOOD PLASMA SEPARATION AND METERING FOR CLINICAL SETTINGS AND CENTRIFUGAL MICROFLUIDICS DEVICES
Noa Lapins, Amin Kazemzadeh, and Aman Russom
KTH Royal Institute of Technology, SWEDEN

T3-321.b AUTONOMOUS CAPILLARY MICROFLUIDIC DEVICES WITH CONSTANT FLOW RATE AND TEMPERATURE-CONTROLLED VALVING
Lanhui Li, Eiko Westerbeek, Jeroen Vollenbroek, Lingling Shui, Mathieu Odijk, and Jan Eijkel
University of Twente, THE NETHERLANDS

T4-421.b BARRIER-FILM BASED REAGENT STORAGE AND RELEASE ON MICROFLUIDIC PLATFORMS FOR SAMPLE-TO-ANSWER AUTOMATION OF BIOASSAYS
Rohit Mishra, Darren McAuley, Natalia Rolinska, David Boyle, and Jens Ducree
Dublin City University, IRELAND

W5-521.b DEVELOPMENT OF A MIST-BASED HYDROGEL CROSSLINKING PRINTHEAD FOR DROPLET-BASED BIOPRINTING
Ben MacCallum, Sara Badr, Emad Naseri, Armin Bodaghkhani, and Ali Ahmadi
University of Prince Edward Island, CANADA
W6-620.b 3D-PRINTED PERISTALTIC PUMP KIT
Terry Ching¹, Yi-Chin Toh², and Michinao Hashimoto¹
¹Singapore University of Technology and Design, SINGAPORE and
²Queensland University of Technology, AUSTRALIA

W6-621.b METACHRONAL ACTUATION OF MAGNETIC ARTIFICIAL CILIA GENERATES STRONG MICROFLUIDIC PUMPING
Shuaizhong Zhang, Zhiwei Cui, Ye Wang, and Jaap den Toonder
Eindhoven University of Technology, THE NETHERLANDS

Th7-720.b A MICRO-MACHINED HYDRAULIC FLOW AND COMPLIANCE TUNER
Cornelia Nef¹, Peter Heeb², Sabrina Frey³, Dominic Obrist⁴, and André Bernard⁵
¹OST University of Applied Science, SWITZERLAND, ²FISBA AG, SWITZERLAND, ³CorFlow Therapeutics AG, SWITZERLAND, ⁴University of Bern, SWITZERLAND, ⁵matriq AG, SWITZERLAND

Th7-721.b RECIPROCATING FLOW-ASSISTED FINGER-ACTUATED DNA EXTRACTION DEVICE
Dong Hyun Han, Juhwan Park, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th8-820.b A MICROFLUIDIC VALVING ARRAY FOR WEARABLE BIOFLUID MANAGEMENT
Jiawei Tan, Haisong Lin, Shuyu Lin, Wenzhuo Yu, Jialun Zhu, Yichao Zhao, Xuanbing Cheng, Siyang Yang, Eric Tang, and Sam Emaminejad
University of California, Los Angeles, USA

Th8-821.b ROTARY ACTUATION SYSTEM FOR MAGNETIC BEADS
Fujio Tsumori and Kazuki Tokumaru
Kyushu University, JAPAN

b - Micro- and Nanoengineering
Bonding, Sealing & Interfacing Technologies

M1-122.b DIRECT LASER WRITING IN THERMOPLASTIC MICROCHANNELS BY IN SITU PHOToinITIATION
Jung Y. Han, Sarah Warshawsky, and Don L. DeVoe
University of Maryland, College Park, USA

M2-223.b SIMULATION OF TUMOR CELL EXTRAVASATION ON A PHOTOLITHOGRAPHY-FREE MICROFLUIDIC DEVICE
Yuichiro Asaumi¹ and Naoki Sasaki²
¹Toyo University, JAPAN and ²Rikkyo University, JAPAN

b - Micro- and Nanoengineering
New Materials and Surface Modification

M1-123.b MECHANISTIC STUDY OF OXYGEN-SCAVENGING PROPERTIES OF OFF-STOICHIOMETRIC THIOL-ENES
Iiro Kiiski¹, Päivi Järvinen¹, Ville Jokinen², and Tiina Sikanen¹
¹University of Helsinki, FINLAND and ²Aalto University, FINLAND

M2-224.b MULTI-MODAL ANALYSIS OF TUMOR-DERIVED EXTRACELLULAR VESICLES IMMUNOCAPTURED FROM PLASMA
Pepijn Beeckman, Agustin Enciso-Martinez, Melissa Piontek, Leon Terstappen, Wouter Roos, Cees Otto, and Séverine Le Gac
University of Twente, THE NETHERLANDS
T3-322.b DEVELOPMENT OF A FLOW-FREE GRADIENT GENERATOR USING A SELF-ADHESIVE THIOL-ACYRILATE MICROFLUIDIC RESIN/HYDROGEL (TAMR/H) HYBRID SYSTEM
Anowar H. Khan¹, Noah M. Smith¹, Michael P. Tullier¹, B. Seth Roberts¹, Derek Englert², John A. Pojman¹, and Adam T. Melvin¹
¹Louisiana State University, USA and ²University of Kentucky, USA

T3-323.b NANOCATALYSTS FOR MAGNETIC FIELD ASSISTED BIOFILM ERADICATION
Mamata Karmacharya and Sunmit Kumar
Ulsan National Institute of Science & Technology (UNIST), KOREA

T4-422.b ELECTROACTIVE POLYMER MEMBRANES AS SUBSTRATES FOR POINT-OF-CARE DEVICES
Ricardo Brito-Pereira¹, André S. Macedo¹, Senentxu Lanceros-Méndez¹,²,³, and Vanessa F. Cardoso¹
¹University of Minho, PORTUGAL, ²BCMaterials, SPAIN, and ³IKERBASQUE, Basque Foundation for Science, SPAIN

W5-522.b EVALUATION OF MINERAL AND BACTERIA ADHESION ON MICROCHANNEL COATED WITH DIAMOND LIKE CARBON AND MPC BASED COPOLYMER
Tomomi Sato, Shun Murooka, Toshihiro Kasama, Zhou Lu, Madoka Takai, and Ryo Miyake
University of Tokyo, JAPAN

W6-622.b FABRICATION OF GOLD-NANORINGS FOR MASSIVELY PARALLEL INTRACELLULAR DELIVERY
Loganathan Mohan¹, Ren Hattori¹, Miho Ishii Teshima¹, Sathish Sundar Dhipil Kumara, Srabani Kar³, Tuhin Subhra Santra¹, Takayuki Shibata¹, and Moeto Nagai¹
¹Toyoohashi University of Technology, JAPAN, ²University of Johannesburg, SOUTH AFRICA, and ³University of Cambridge, UK

Th7-722.b HOLIFAB: PRECISE FLOW CONTROL USING PHOTO ACTUATED HYDROGEL VALVES AND PI CONTROLLED LED ACTUATION FOR MICROFLUIDIC MEMS.
Ruairi Barrett, Komala Pandurangan, Akshay Shinde, Dermot Diamond, and Margaret McCaul
Insight SFI Research Centre for Data Analytics, IRELAND

Th8-822.b MECHANICAL CHARACTERIZATION OF SPIDER SILK NANOMEMBRANES
Linnea Gustafsson, Christos P. Tasiopoulos, Thijs Duursma, Ronnie Jansson, Thomas C. Gasser, My Hedhammar, and Wouter van der Wijngaart
KTH Royal Institute of Technology, SWEDEN

b - Micro- and Nanoengineering

Others

T4-423.b RECONSTITUTION OF HUMAN PRIMORDIAL GERM CELL DEVELOPMENT FROM PLURIPOTENT STEM CELLS IN A SYNTHETIC EMBRYONIC ENVIRONMENT
Sajedeh Nasr Esfahani¹, Yi Zheng¹, Agnes M. Resto Irizarry¹, Yue Shao², Sicong Wang¹, Xufeng Xue¹, and Jianping Fu¹
University of Michigan, Ann Arbor, USA

b - Micro- and Nanoengineering

Industrial Benefactor

M1-124.b FROM LAB TO FAB: CONSIDERATIONS FOR DEVICE DESIGN AND MANUFACTURING OPTIONS FOR UPSCALING MICROFLUIDIC DEVICE PRODUCTION
Holger Becker, Nadine Hlawatsch, Richard Klemm, and Claudia Gärtner
microfluidic ChipShop GmbH, GERMANY
Sensors and Detection Technologies

Physical Sensors

<table>
<thead>
<tr>
<th>M1-125.c</th>
<th>HARDNESS MEASUREMENT BY MICROMANIPULATOR WITH EMBEDDED SEMICONDUCTOR STRAIN GAUGE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Mitsuhiro Horade</td>
</tr>
<tr>
<td></td>
<td>National Defense Academy of Japan, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M2-225.c</th>
<th>LOVE WAVE SENSOR FOR DETECTION OF VISCOSITY CHANGES ON A CELL MONOLAYER</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pedro A. Segura Chavez¹,², Frederic Sarry¹,², Mohamed Lamine Fayçal Bellarej², Jérémy Bonhomme², Denis Beyssen², Lucile Olive³, Mourad Oudich², and Paul G. Charette¹</td>
</tr>
<tr>
<td></td>
<td>¹Université de Sherbrooke, CANADA and ²Université de Lorraine, FRANCE</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T3-324.c</th>
<th>MULTIPLEXED QCM-P SYSTEM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Siqi Ji, Berk Akinci, Tory A. Farnping, Thomas A. Radzik, and Hongwei Sun</td>
</tr>
<tr>
<td></td>
<td>Umass Lowell, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>T4-424.c</th>
<th>WEARABLE MICROFLUIDIC SENSOR TO MONITOR SWEAT FLOW RATE AND ELECTROLYTE CONCENTRATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Yuki Hashimoto¹, Yuki Sakurai², Takako Ishihara¹, Kei Kuwabara¹, and Hiroyoshi Togo¹</td>
</tr>
<tr>
<td></td>
<td>¹NTT Device Innovation Center, NTT Corporation, JAPAN and ²Nagaoka University of Technology, JAPAN</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W5-523.c</th>
<th>A FLEXIBLE AND STABLE STRAIN SENSOR BASED ON POLYIMIDE INCORPORATED WITH CARBON BLACK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Jie Wang, Yunfei Liu, Wenhan Chang, Shoule Sun, Chengchen Gao, Zhenchuan Yang, and Yilong Hao</td>
</tr>
<tr>
<td></td>
<td>Peking University, CHINA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>W6-623.c</th>
<th>CARBON NANOTUBE-PAPER COMPOSITE-CAPACITIVE SENSOR FOR RESPIRATORY MONITORING</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tianyi Li, Vigneshwar Sakthivelpathi, Seong-Joong Kahng, Zhongjie Qian, Sheila Goodman, Heather Wise, Anthony B. Dichiara, Younghoon Kwon, and Jae-Hyun Chung</td>
</tr>
<tr>
<td></td>
<td>University of Washington, USA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Th7-723.c</th>
<th>A COMPACT MICROCALORIMETER FOR THE RAPID CHARACTERIZATION OF LIQUID THERMAL PROPERTIES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sheng Ni¹, Hanliang Zhu², Pavel Neuzil²,³, and Levent Yobas¹</td>
</tr>
<tr>
<td></td>
<td>¹Hong Kong University of Science and Technology, HONG KONG, ²Northwestern Polytechnical University, CHINA, and ³Brno University of Technology, CZECH REPUBLIC</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Th8-823.c</th>
<th>DESIGN AND CONSTRUCTION OF A CONTINUOUS QUANTITATIVE FORCE MEASUREMENT MICRODEVICE FOR ARTIFICIAL SKELETAL MUSCLE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Masaki Harada, Tomohiro Nakamura, and Sho Yokoyama</td>
</tr>
<tr>
<td></td>
<td>Osaka Institute of Technology, JAPAN</td>
</tr>
</tbody>
</table>

Chemical & Electrochemical Sensors

<table>
<thead>
<tr>
<th>M1-126.c</th>
<th>A PAPER-BASED DEVICE FOR INTEGRATED HIGH-THROUGHPUT COVID-19 DETECTION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Hao Sun¹, Jianping Zheng², Hui Dong¹, and Yuan Jia³</td>
</tr>
<tr>
<td></td>
<td>¹Fuzhou University, CHINA, ²Fujian Provincial Hospital, CHINA, and ³Southeast University, CHINA</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M1-127.c</th>
<th>ELECTROCHEMICAL OLGONUCLEOTIDE TEMPLATED REACTIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rob B. Channon¹, Philip Gillespie¹, Md Nazmul Islam², Xiaotong Meng¹, Yu-Chih Chen¹, Danny O'Hare¹, and Sylvain Ladame¹</td>
</tr>
<tr>
<td></td>
<td>¹Imperial College London, UK and ²Teesside University, UK</td>
</tr>
</tbody>
</table>
M1-128.c MULTISTEP REACTIONS BY ALIGNED TABLET REAGENTS FOR LONG TERM MONITORING OF PLANT CULTURE SOLUTION
Yoko Azuma1, Toshihiro Kasama1, Yoshishige Endo1, Tetsushi Koide2, Chihiro Sone3, Masashi Komine3, Atsushi Ogawa1, and Ryo Miyake1
1University of Tokyo, JAPAN, 2Hiroshima University, JAPAN, and 3Akita Prefectural University, JAPAN

M1-129.c PRINTED MULTISENSING PATCH WITH INTEGRATED MICROFLUIDICS FOR WEARABLE SWEAT ANALYSIS APPLICATIONS
Brince Paul1, Silvia Demur1, Rubaiyet Iftekharul Haque1, Peter van der Wal1, Céline Lafaye2, Mathieu Saubade2, and Danick Briand1
1École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND and 2Centre Hospitalier Universitaire Vaudois (CHUV), SWITZERLAND

M2-226.c A THREAD-BASED ELECTROCHEMICAL SENSOR FOR SPATIAL MONITORING OF WOUND OXYGENATION
Junfei Xia, Wenxin Zeng, Wei Wang, Rachel Owyeung, Victor Arsenescu, and Sameer Sonkusale
Tufts University, USA

M2-227.c ELECTROCHEMICAL SENSOR FOR Mn DETECTION IN DRINKING WATER
Elena Boselli1, Zhizhen Wu1, Alexa Friedman2, Birgit Claus Henn2, and Ian Papautsky1
1University of Illinois, Chicago, USA and 2Boston University School of Public Health, USA

M2-228.c NANOPORE DECODING FOR DNA COMPUTATION WITH PARALLEL SELF-ASSEMBLY
Sotaro Takiguchi and Ryuji Kawano
Tokyo University of Agriculture and Technology, JAPAN

M2-229.c TiO2 NANOTUBES-HYDROGEL BIOSENSOR SCAFFOLD FOR SWEAT MONITORING
Udara B. Gunatilake, Edilberto Ojeda, Sandra Garcia-Rey, Lourdes Basabe-Desmonts, and Fernando Benito-Lopez
University of the Basque Country, SPAIN

T3-325.c ANALYSIS OF ION COMPONENTS DERIVED FROM PARTICULATE MATTER USING ION SELECTIVE ELECTRODES
Haruka Yamauchi1, Taisuke Shimada1, Takao Yasui1,2, Tatsuro Goda3, Noritada Kaji4, Yuji Miyahara3, and Yoshinobu Baba1,5
1Nagoya University, JAPAN, 2Japan Science and Technology Agency (JST), JAPAN, 3Tokyo Medical and Dental University, JAPAN, 4Kyushu University, JAPAN, 5National Institutes for Quantum and Radiological Science and Technology, JAPAN

T3-326.c EMBEDDED SENSOR BASED ON TANDEM SMARTPHONE-MICROFLUIDIC DEVICE FOR THE DETECTION OF TNT IN SURFACE AND SEA WATERS
Jérémy Bell, Mustafa Biyikal, and Knut Rurack
BAM Berlin, GERMANY

T3-327.c NOVEL FORMAT OF A PAPER-BASED DEVICE FOR COMPETITIVE IMMUNOASSAYS
Takeshi Komatsu, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi
Hokkaido University, JAPAN

T3-328.c TOWARDS ON-SITE MONITORING OF SOIL NUTRIENTS VIA CAFETIERE-BASED EXTRACTION AND PAPER-BASED ANALYSIS
Samantha Richardson1, Samira Al-Hina1, Jesse Gitaka2, Will M. Mayes1, Mark Lorch1, and Nicole Pamme1
1University of Hull, UK and 2Mount Kenya University, KENYA
T4-425.c ANALYSIS OF PARTICULATE MATTERS VIA SURFACTANT-ASSISTED IONIC CURRENT SENSING
Keiko Fujino¹, Taisuke Shimada¹, Takao Yasui¹², Kazuki Nagashima³, Takashi Yanagida¹, Noritada Kaji¹, and Yoshinobu Baba¹⁴
¹Nagoya University, JAPAN, ²Japan Science and Technology Agency (JST), JAPAN, ³Kyushu University, JAPAN, and ⁴National Institutes for Quantum and Radiological Science and Technology, JAPAN

T4-426.c HIGH-RESOLUTION BIOCHEMICAL ACTIVITY MEASUREMENTS WITH COMMERCIAL TRANSISTORS
Seulki Cho, Son T. Le, Curt A. Richter, and Arvind Balijepalli
National Institute of Standards and Technology (NIST), USA

T4-427.c ON-CHIP MONITORING OF PHOSPHATE VIA A DROPLET MICROFLUIDIC SENSOR
Bingyuan Lu¹, Sharon Coleman¹, Evanthia Papadopoulou², Kyriacos Makris², Brett Warren², Adrian Nightingale¹, and Xize Niu¹
¹University of Southampton, UK and ²SouthWestSensor Ltd., UK

T4-428.c WEARABLE PATCH-TYPE DEVICE FOR BIO-INFORMATION MONITORING WITH POROUS MICRONEEDLE AND FLEXIBLE AG/AGCl REFERENCE ELECTRODE
Ryohei Takizawa, Yuina Abe, Bibek Raut, Hajime Konno, Natsumi Kimura, Shotaro Yoshida, Hiroya Abe, and Matsuhiko Nishizawa
Tohoku University, JAPAN

W5-524.c A BIOCHIP INTEGRATED WITH MICROELECTRODES FOR MONITORING OF PYOCYANIN IN THE FORMATION PROCESS OF BIOFILMS
Lulu Liu, Ling Li, Chuang Ge, and Yi Xu
Chongqing University, CHINA

W5-525.c CARBON DOT-CONJUGATED-NAPHTHALIMIDE BASED RATIOMETRIC FLUORESCENCE PROBE FOR HYALURONIDASE DETECTION
Pushap Raj and Tae Yoon Lee
Chungnam National University, KOREA

W5-526.c HYBRID WEARABLE TECHNOLOGY FOR SWEAT BIOMONITING
Meritxell Rovira¹, Cesar Fernández-Sánchez¹, Silvia Demuru², Rubaiyet Haque², Danick Briand², and Cecilia Jimenez-Jorquera¹
¹Universitat Autònoma de Barcelona, SPAIN and ²École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5-527.c OPEN CHANNEL SWEAT VIA FOR LONG-TERM MONITORING OF SWEAT RATE AND CONCENTRATION
Jina Choi¹, Sangha Kim¹, Sunho Kim², Hyunjung Yi², and Rhokyun Kwak¹
¹Hanyang University, KOREA and ²Korea Institute of Science and Technology (KIST)

W6-624.c A DIFFERENTIAL MODE EXTENDED GATE FIELD EFFECT TRANSISTOR PH SENSOR BASED ON AL2O3 THICKNESS DEPENDENT SENSITIVITY
Qi Cheng, Qiancheng Zhao, Chengchen Gao, Yilong Hao, and Zhenchuan Yang
Peking University, CHINA

W6-625.c DIFFERENTIAL PHOTOELECTROCHEMICAL DNA SENSING BY MODULATING THE PLASMONIC PROPERTIES OF METAL NANOPARTICLES
Sudip Saha, Amanda Victorious, and Leyla Soleymani
McMaster University, CANADA
W6-626.c HYDROGEL-BASED TRANSPARENT SUBDURAL ELECTRODE WITH IONIC CONNECTION
Ayaka Nishimura, Ryota Suwabe, Yuka Ogihara, Yuina Abe, Hiroya Abe, Shotaro Yoshida, and Matsuhiko Nishizawa
Tohoku University, JAPAN

W6-627.c OXYGEN METABOLISM ANALYSIS OF A VASCULARIZED SPHEROID USING A SCANNING ELECTROCHEMICAL MICROSCOPY
Yuji Nashimoto1, Rei Mukomoto1, Takato Terai1, Kosuke Ino1, Koichi Nishiyama2, Ryuji Yokokawa3, Takahsi Miura4, and Hitoshi Shiku1
1Tohoku University, JAPAN, 2Kumamoto University, JAPAN, 3Kyoto University, JAPAN, and 4Kyushu University, JAPAN

Th7-724.c A DUAL-READOUT PAPER-BASED SENSOR FOR ON-SITE DETECTION OF PENICILLINASE WITH A SMARTPHONE
Jia Xu and Li Yang
Northeast Normal University, CHINA

Th7-725.c EFFECT OF MEMBRANE ELECTRODE VIBRATION ON MASS TRANSFER FOR ELECTROCHEMICAL MICRO SENSORS
Tianyi Zhang, Peng Zhou, Terrence Simon, and Tianhong Cui
University of Minnesota, USA

Th7-726.c LABEL-FREE IMPEDIMETRIC SENSING OF CORTISOL IN HUMAN SERUM BASED ON NANOWELL ARRAY ELECTRODES
Seyed Reza Mahmoodi1, Pengfei Xie1, Daniel P. Zachs2, Erik J. Peterson3, Hubert H. Lim2, Mark G. Allen3, and Mehdi Javanmard1
1Rutgers University, USA, 2University of Minnesota, USA, and 3University of Pennsylvania, USA

Th7-727.c POINT-OF-CARE MICROANALYZER FOR POTENTIOMETRIC DETERMINATION OF AMMONIUM IN PLASMA
Beatriz Rebollo-Calderón1, Antonio Calvo-Lopez1, Aida Ormazabal2, Mª del Mar Puyol1, Rafael Artuch2, and Julian Alonso-Chamarro1
1Autonomous University of Barcelona, SPAIN and 2Sant Joan de Déu Hospital, SPAIN

Th8-824.c A NON-ENZYMATIC ELECTROCHEMICAL SENSOR USING WRINKLED GOLD FILM ON SHRINK POLYMER
Xiaomeng Bian1 and Tianhong Cui2
1Tsinghua University, CHINA and 2University of Minnesota, USA

Th8-825.c ELECTROCHEMICAL DETERMINATION OF MANGANESE IN WHOLE BLOOD
Zhizhen Wu and Ian Papautsky
University of Illinois, Chicago, USA

Th8-826.c MULTIPLEX SENSOR FOR ION SENSING BASED ON PRINTED CIRCUIT BOARD
Zhehao Zhang and Ian Papautsky
University of Illinois, Chicago, USA

Th8-827.c POWER-FREE AUTOMATED CAPILLARY FLOW ASSAY FOR SARS-COV-2 DETECTION
Jeremy Link, Cody Carrell, Ilhoon Jang, Yosita Panraksa, Ana Sanchez-Cano, Zachary Call, Eka Noviana, David S. Dandy, Brian J. Geiss, and Charles S. Henry
Colorado State University, USA
| M1-130.c | DNA SEQUENCING USING RGB SENSOR OF CONSUMER DIGITAL CAMERA
Takashi Anazawa¹, Motohiro Yamazaki², Shuhei Yamamoto², and Ryoji Inaba²
¹Hitachi, Ltd., JAPAN and ²Hitachi High-Tech Corporation, JAPAN |
| M1-131.c | REAL-TIME STRAIN MEASUREMENT OF PIEZOELECTRICALLY ACTUATED POLYDIMETHYLSILOXANE (PDMS) BAR USING FIBRE BRAGG GRATING SENSOR FOR BIOMEDICAL APPLICATIONS
Rahul Kumar, Bruno Rente, Souvik Ghosh, Christabel Tan, Tong Sun, and Kenneth Grattan
City University of London, UK |
| M2-230.c | REAL-TIME TRACKING OF PARTICLES AT >1,200 EVENTS PER SECOND USING GPU-ACCELERATED IMAGE PROCESSING
Arpith Vedhanayagam and Amar S. Basu
Wayne State University, USA |
| T3-329.c | FABRICATION AND CHARACTERIZATION OF AXIAL VIEW LIQUID ELECTRODE PLASMA
Yueh-Han Huang¹, Daisuke Hirose², Meng-Jiy Wang¹, and Yuzuru Takamura²
¹National Taiwan University of Science and Technology, TAIWAN and ²Japan Advanced Institute of Science and Technology, JAPAN |
| T3-330.c | REFERENCE PH MICROSENSR FOR FLUORESCENCE MEASUREMENT IN CELL CULTURE ENVIRONMENT WITHOUT INITIAL PH INFORMATION
Hisataka Maruyama¹ and Fumihito Arai²
¹Nagoya University, JAPAN and ²University of Tokyo, JAPAN |
| T4-429.c | HIGH RESOLUTION PATTERNING OF HYDROGEL SENSING MOTIFS WITHIN FIBROUS SUBSTRATES FOR HIGHLY SENSITIVE AND MULTIPLEXED DETECTION OF NUCLEIC ACID BIOMARKERS
Dana Al Sulaiman, Sarah J. Shapiro, Jose Gomez-Marquez, and Patrick S. Doyle
Massachusetts Institute of Technology, USA |
| T4-430.c | SOLVENT-ENHANCED PHOTOTHERMAL MOLECULE DETECTION METHOD FOR NANOFUIDICS AND ITS APPLICATION TO FEMTOLITER NORMAL-PHASE CHROMATOGRAPHY
Yoshiyuki Tsuyama, Kyojiro Morikawa, and Kazuma Mawatari
University of Tokyo, JAPAN |
| W5-528.c | A MODULAR SMARTPHONE-ENABLED PLATFORM TO DETECT NUCLEIC ACID TARGETS BASED ON QUANTIFICATION OF COALESCED LAMP PRECIPITATE
Manaswini Masetty, Joseph Sepate, Sanghyun Do, and Aashish Priye
University of Cincinnati, USA |
| W5-529.c | INTEGRATED MICROFLUIDIC SERS CHIP FOR THE CAPTURE AND DETECTION OF PATHOGENIC BACTERIA IN THE AIR
Xi Su, Rui Ren, Shifang Li, Li Chen, and Yi Xu
Chongqing University, CHINA |
SPATIOTEMPORAL MAPPING OF A HYPOXIA-FFA SYNERGY ON BETA CELL CALCIUM OSCILLATIONS
Kai Duan and Joe Lo
University of Michigan, Dearborn, USA

ACHIEVING SUB-MICROMETER IMAGING RESOLUTION IN PDMS SOFT LITHOGRAPHY DEVICES USING MODIFIED INVERTED SELECTIVE PLANE ILLUMINATION MICROSCOPY
Tienan Xu¹, Yean Jin Lim¹, Yujie Zheng¹, Moon Sun Jung², Katharina Gaus², Elizabeth Gardiner¹, and Woei Ming Lee¹
¹Australian National University, AUSTRALIA and ²University of New South Wales, AUSTRALIA

LOW-COST AND PORTABLE PHOTONIC IMMUNO-SENSOR BASED ON GUIDED MODE RESONANCE
Alex Drayton, Kezheng Li, Matthew Simmons, Christopher Reardon, and Thomas F. Krauss
University of York, UK

ULTRASENSITIVE PLASMONIC SENSORS ON OPTICAL FIBERS END-FACE
Alba Calatayud-Sanchez, Angel Ortega-Gomez, Javier Barroso, Joseba Zubia, Fernando Benito-Lopez, Joel Villatoro, and Lourdes Basabe-Desmonts
University of the Basque Country, SPAIN

DETECTION OF HYDROGEN SULPHIDE IN HUMAN BLOOD PLASMA ON A MICROFLUIDIC PLATFORM
Ravindra Gaikwad, Karunya Ramsamy, and Ashis K. Sen
Indian Institute of Technology, Madras, INDIA

METAL ION ENRICHMENT USING ORGANIC NANOCRYSTAL COATED-MICROFLUIDIC PAPER ANALYTICAL DEVICES TO ACHIEVE HIGHLY SENSITIVE COLORIMETRIC DETECTION
Grasianto, Mao Fukuyama, Derrick Mott, Yoshitaka Koseki, Hitoshi Kasai, and Akihide Hibara
Tohoku University, JAPAN

DEVELOPMENT OF A SCANNING PIV TECHNIQUE FOR 3D CHARACTERIZATION OF FLOWS IN MICROCHANNELS
Quentin Galand, Pierre Gelin, Ketki Srivastava, David Blinder, Peter Schelkens, and Wim De Malsche
Vrije Universiteit Brussel, BELGIUM

RAPID IDENTIFICATION OF HCC SERUM BASED ON MICROFLUIDIC SERS CHIP
Xinyu He, Chuang Ge, Li Chen, and Yi Xu
Chongqing University, CHINA

C - Sensors and Detection Technologies

OTHERS

FLEXIBLE POLYOLEFIN-BASED DOPAMINE SENSOR WITH HIGH SELECTIVITY
Wenzheng He¹, Ruitao Liu¹, Peng Zhou², Qingyuan Liu¹, Tianhong Cui²
¹Tsinghua University, CHINA and ²University of Minnesota, USA

WIRELESS AND BATTERY-FREE DIGESTIBLE SENSOR FOR INTESTINAL BACTERIA MONITORING
Ayaka Inami, Erika Iyama, Shun Itai, and Hiroaki Onoe
Keio University, JAPAN
M2-231.c GRADIENT ELUTION MOVING BOUNDARY ELECTROPHORESIS OF HOMEMADE FUEL-OXIDIZER EXPLOSIVES
Shannon T. Krauss1, Dillon Jobes2, and Thomas P. Forbes1
1National Institute of Standards and Technology (NIST), USA and 2Tulane University, USA

T3-331.c LOW-COST LOW-MOTION ARTIFACT ON-SKIN SENSOR-SYSTEM FOR PHYSIOLOGICAL SIGNAL RECORDING
Anan Zhang, Thalia Hua, Damian Redfearn, and S.K. Ameri
Queen's University, CANADA

T4-431.c PAPER MICROFLUIDICS DEVICE FOR LABEL-FREE DETECTION OF MESENCHYMAL STEM CELLS SECRETED VASCULAR ENDOTHELIAL GROWTH FACTOR
Enrique Azuaje Hualde, Marian Martínez de Pancorbo, Fernando Benito López, and Lourdes Basabe-Desmonts
University of the Basque Country, SPAIN

W5-531.c PLGA POROUS MICRONEEDLES FOR INTERSTITIAL FLUID COLLECTION AIMED FOR CONTINUOUS GLUCOSE SENSING
Gwenael Bonfante, Hakjae Lee, Leilei Bao, Jongho Park, Nobuyuki Takama, and Beomjoon Kim
University of Tokyo, JAPAN

W6-631.c RAPID LABEL-FREE DNA QUANTIFICATION BY MULTI-FREQUENCY IMPEDANCE SENSING ON A CHIP
Jianye Sui1, Neeru Gandotra2, Curt Scharfe1, and Mehdi Javanmard1
1Rutgers University, USA and 2Yale University, USA

Th7-730.c AN ULTRASENSITIVE SURFACE ACOUSTIC WAVE SENSOR BASED ON Ti3C2TX/Au NPS COMPOSITE FOR THE DETECTION OF ENDOTOxin
Xiao Li Wang, Chuang Ge, Li Chen, and Yi Xu
Chongqing University, CHINA

Th7-731.c SHAKE IT OR SHRINK IT: MASS TRANSPORT AND KINETICS IN SURFACE BIOASSAYS USING AGITATION AND MICROFLUIDICS
Anna Fomitcheva Khartchenko, Iago Pereiro, and Govind V. Kaigala
IBM Research - Europe, SWITZERLAND

Th8-830.c DETECTION OF PROTEOFORMS FROM SINGLE CELLS BY MULTIPLEXED ION BEAM IMAGING
Gabriela Lomeli1, Marc Bosse2, Sean Bendall1, Michael Angelo2, and Amy E. Herr3
1UC Berkeley – UCSF Graduate Program in Bioengineering, USA, 2Stanford University, USA, and 3University of California, Berkeley, USA

Th8-831.c STIMULI-RESPONSIVE HYDROGELS EMBEDDING MECHANICAL METAMATERIALS FOR HIGH SENSITIVE BIOCHEMICAL SENSORS
Shota Yamawaki, Mio Tsuchiya, and Hiroaki Onoe
Keio University, JAPAN

\textbf{c - Sensors and Detection Technologies}

\textbf{Industrial Benefactor}

T3-332.c NOVEL IMAGING BASED HIGH-SPEED, HIGH-THROUGHPUT ANALYSIS AND CONTROL SYSTEM FOR MICROFLUIDICS
Daniel Geiger1, Jonas Pfeil1, Tobias Neckermuss1, Lisa Kwapich2, Patricia Schwilling2, and Othmar Marti2
1Sensific GmbH, GERMANY and 2University of Ulm, GERMANY
d - Integrated Microfluidic Platforms

Electrophoretic & Chromatographic Separation

M1-134.d MIXED-SCALE MODULAR FLUIDIC SYSTEMS FOR POINT-OF-CARE TESTING (POCT)
Steven A. Soper, Michael C. Murphy, and Sunggook Park
University of Kansas, USA

M2-232.d 3D PRINTING FOR ENHANCED FABRICATION OF MICROFLUIDIC FREE-FLOW ELECTROPHORESIS
John-Alexander Preuß and Dr. Janina Bahnemann
Leibniz Universität, Hannover, GERMANY

M2-233.d OVERCOMING MASS TRANSFER LIMITATIONS BY INTRODUCING VORTEX CHROMATOGRAPHY
Eiko Y. Westerbeek1,2, Guillermo Gonzalez Amaya1, Wouter Olthuis1, Jan C.T. Eijkel1, and Wim de Malsche1
1*Vrije Universiteit Brussel, BELGIUM and 2University of Twente, THE NETHERLANDS*

T3-333.d A MEDIUM THROUGHPUT SYSTEM FOR MEASUREMENT OF ISLET SECRETIONS
Yao Wang, Weijia Leng, and Michael G. Roper
Florida State University, USA

T3-334.d SUMMIT: A SEMI-AUTOMATED PROTEIN PEAK QUANTIFICATION ALGORITHM FOR HIGH-THROUGHPUT SINGLE-CELL ELECTROPHORESIS
Julea Vlassakis1, Kevin A. Yamauchi2, and Amy E. Herr1
1*University of California, Berkeley, USA and 2Friedrich Miescher Institute for Biomedical Research, SWITZERLAND*

T4-433.d A MICROFLUIDIC IN-SITU SAMPLING PROBE INTEGRATED WITH LIQUID CHROMATOGRAPHIC SEPARATION CAPACITY FOR MASS SPECTROMETRY ANALYSIS
Diqiong Jin, Shaowen Shi, and Yan Ma
Zhejiang University, CHINA

W5-532.d A MONOLITHIC 3D PRINTED µFFE DEVICE WITH INTEGRATED SWAB RECEPTACLE FOR ENRICHMENT OF MULTIDRUG-RESISTANT PATHOGENS
Christian Neubert1, Ole Behrmann1, Denny Maaz2, Frank T. Hufert1, and Gregory Dame1
1*Brandenburg Medical School Theodor Fontane, GERMANY and 2German Federal Institute for Risk Assessment, GERMANY*

W6-632.d DETECTING CELL DEATH BY ELECTROPHORETIC CYTOMETRY
Ana E. Gomez Martinez and Amy E. Herr
University of California, Berkeley, USA

Th7-732.d DEVELOPMENT OF A NOVEL MICROFLUIDIC APPROACH FOR RAPID AND CONTINUOUS DETECTION OF PATHOGENS IN FOOD AND WATER SAMPLES
Gurpreet Klar, Crystal M. Han, and Liat Rosenfeld
San Jose State University, USA
INTEGRATED SAMPLE PREPARATION FOR HIV MOLECULAR TESTING IN A PAPER-BASED DEVICE
Andrew T. Bender¹, Benjamin P. Sullivan¹, Jane Y. Zhang¹, Lorraine Lillis², David S. Boyle², and Jonathan D. Posner¹
¹University of Washington, USA and ²PATH, USA

d - Integrated Microfluidic Platforms

Particle Separation

M1-135.d HIGH THROUGHPUT EXTRACELLULAR VESICLE SORTING USING ELECTROKINETIC DETERMINISTIC LATERAL DISPLACEMENT
Bao D. Ho, Jason P. Beech, and Jonas O. Tegenfeldt
Lund University, SWEDEN

M1-136.d PARTICLE MANIPULATION USING PROGRAMMABLE HYDRODYNAMIC FORCES
Ankur Kislaya, Daniel S.W. Tam, and Jerry Westerweel
Delft University of Technology, THE NETHERLANDS

M2-234.d HIGH THROUGHPUT ISOLATION OF SMALL EXTRACELLULAR VESICLES FROM WHOLE BLOOD USING MULTIPLEXED SPIRAL MICROFLUIDICS (EXODFFHT)
Sheng Yuan Leong¹, Hui Min Tay¹, Megha Upadya¹, Fang Kong¹, Rinkoo Dalan², Dao Ming³, and Han Wei Hou¹
¹Nanyang Technological University, SINGAPORE, ²Tan Tock Seng Hospital, SINGAPORE, and ³Massachusetts Institute of Technology, USA

M2-235.d POROUS PDMS SUBSTRATE-ASSISTED PARTICLE SORTING BASED ON HYDRODYNAMIC CROSS-FLOW MICROFLUIDIC FILTRATION
Yurika Sakurai, Takeru Sato, Masumi Yamada, and Minoru Seki
Chiba University, JAPAN

T3-335.d HIGH-THROUGHPUT CONTINUOUS INERTIAL FOCUSING OF MICRO-ALGAE IN ASYMMETRIC SERPENTINE CHANNELS
Mohammad Al-Hurani, Rodney Forster, Nicole Pamme, and Alex Iles
University of Hull, UK

T3-336.d SCALING OF DLD DEVICES FOR CELL FRACTIONATION DOWN TO A SINGLE COLUMN FOR ULTRAHIGH THROUGHPUT PER AREA
Weibin Liang, Robert H. Austin, and James C. Sturm
Princeton University, USA

T4-434.d DETERMINISTIC LATERAL DISPLACEMENT OCCURS WITHOUT CONTACT AT INERTIAL FLOW RATES
William J. Monck¹, Calum P. Mallorie², Rohan R. Vernekar², Timm Krüger², and David W. Inglis¹
¹Macquarie University, AUSTRALIA and ²University of Edinburgh, UK

T4-435.d MANIPULATION OF BIOMOLECULES USING A 3D-PRINTED INSULATOR-BASED DIELECTROPHORESIS DEVICE
Mohammad Towshif Rabbani, Mukul Sonker, Jorvani Cruz Villarreal, and Alexandra Ros
Arizona State University, USA

T4-436.d SHAPE BASED CHROMOSOME SEPARATION IN THE INERTIAL FOCUSING DEVICE
Haidong Feng, Jules Magda, and Bruce Gale
University of Utah, USA
W5-533.d DETERMINISTIC LATERAL DISPLACEMENT SYSTEMS WITH ARRAYED THREE-DIMENSIONAL ELECTRODES FOR TUNABLE PARTICLE SORTING
Gloria Porro, Kevin Keim, Giovanni Cappai, Jason Beech, Jonas Tegenfeldt, and Carlotta Guiducci
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5-534.d OPERATING SPIRAL INERTIAL MICROFLUIDICS AT CONCENTRATIONS UP TO 3.4X10^9 CELLS/ML FOR HIGH-CONCENTRATION DEWATERING OF CHLORELLA VULGARIS
Catherine Hill, Nik Willoughby, and Helen Bridle
Heriot-Watt University, UK

W5-535.d STREAM BIFURCATION INDUCED BLOOD CELL SEPARATION IN SEMI-DILUTED VISCOELASTIC FLOW
Haidong Feng, Jules Magda, and Bruce Gale
University of Utah, USA

W6-633.d DEVELOPING MICROFLUIDIC DEVICES AND SYSTEMS FOR ISOLATION OF EXTRACELLULAR VESICLES (EVS)
Himayasri R.A.O. Lekkala, Ian D. Johnston, Nikolay Dimov, and Jameel Inal
University of Hertfordshire, UK

W6-634.d PAPER-BASED PUMP-FREE MAGNETOPHORESIS
Zachary Call, Cody Carrell, Ilhoon Jang, Brian Geiss, David Dandy, and Charles Henry
Colorado State University, USA

W6-635.d UPSCALING OF DIELECTROPHORETIC CONTINUOUS-FLOW DNA SEPARATION IN A MICROFLUIDIC SYSTEM
Jakob Derksen, Dario Anselmetti, and Martina Viefhues
Bielefeld University, GERMANY

Th7-733.d FLOW FIELD-ASSISTED MICROFLUIDIC CHIP FOR THE SHEATHLESS SEPARATION OF MICROPARTICLES AND CELLS
Shitao Shen¹, Mingliang Jin¹, Zichuan Yi², Xing Li¹, Zhibin Yan¹, Guofu Zhou¹, and Lingling Shui¹²
¹South China Normal University, CHINA and
²University of Electronic Science and Technology of China, CHINA

Th7-734.d PARTICLE AND PATHOGEN FOCUSING AND PRE-ENRICHMENT IN ASYMMETRICALLY CURVED WINDING CHANNELS VIA INERTIAL MICROFLUIDICS
Pablo Rodriguez, Charlotte E. Dyer, Alexander Iles, and Nicole Pamme
University of Hull, UK

Th8-833.d HIGH THROUGHPUT CLOGGING-FREE MICROFLUIDIC PARTICLE FILTER BY FEMTOSECOND LASER MICROMACHINING
Filippo Storti¹², Silvio Bonfadini², and Luigino Criante²
¹Politecnico di Milano, ITALY and ²Istituto Italiano di Tecnologia, ITALY

Th8-834.d PARTICLE MIGRATION IN SHEAR THINNING VISCOELASTIC FLUID
Shamik Hazra¹, Sushanta K. Mitra², and Ashis Kumar Sen¹
¹Indian Institute of Technology, Madras, INDIA and ²University of Waterloo, CANADA
d - Integrated Microfluidic Platforms

Micromixers & Microreactors

M1-137.d
HIGH-THROUGHPUT 3D GLASS MICROMIXER WITH AN IMPELLER MONOLITHICALLY FABRICATED USING SELECTIVE LASER-INDUCED ETCHING (SLE)
Sungil Kim\(^1\), Jeongtae Kim\(^1\), Yeun-Ho Joung\(^1\), Sanghoon Ahn\(^2\), Jiyeon Choi\(^2\), and Chiwan Koo\(^1\)
\(^1\)Hanbat National University, KOREA and \(^2\)Korea Institute of Machinery and Materials (KIMM), KOREA

M2-236.d
LIQUID PHASE OXIDATIVE DEGRADATION OF LIGNIN IN MICROFLUIDIC AND BATCH REACTOR
Niloofar Manafi and Neda Nazemifard
University of Alberta, CANADA

T3-337.d
THE INFLUENCE OF SHEAR ON THE POLYMORPHISM OF ROY UNDER CONSTANT SHEAR CONDITIONS
Sander Stroobants, Marzena Krezk, Pierre Gelin, Iwona Ziemecka, Yousef Pourvais, Heidi Ottevaere, Wim De Malsche, and Dominique Maes
Vrije Universiteit Brussel, BELGIUM

T4-437.d
THERMAL MANIPULATION FOR A SINGLE CELL UTILIZING AREA COOLING
Yigang Shen, Yaxiaer Yalikun, Yusufu Aishan, and Yo Tanaka
Osaka University, JAPAN

Th7-735.d
DEVELOPMENT OF A PILLAR ARRAY MIXER FOR POST-COLUMN DERIVATIZATION ON A CHIP
Makoto Tsunoda, Muneki Isokawa, and Takashi Funatsu
University of Tokyo, JAPAN

Th8-835.d
ENHANCEMENT OF PHOTOCATALYTIC REACTION ASSISTED BY NANOELECTROKINETICS
Cong Wang and Jungyul Park
Sogang University, KOREA

d - Integrated Microfluidic Platforms

Chemical & Particle Synthesis

M1-138.d
PHOTOCHEMISTRY IN AN ASSEMBLY OF 108 MICROMETRIC (3.65 \(\mu\)M) CAPILARIES GRAFTED WITH A PHOSENSITIZER
Christian Rolando, Fabien Gelat, Christophe Penverne, Maël Penhoat, Géraud Bouwmans, and Laëtitia Chausset-Boissarie
Université de Lille, FRANCE

W5-536.d
A BOLT-NUT MICROREACTOR FOR THE SYNTHESIS OF CUINS2/ZNS QUANTUM DOTS
Hyunbin Kim and Do Hyun Kim
Korea Advanced Institute of Science and Technology (KAIST), KOREA

W6-636.d
A CONTINUOUS PLATFORM FOR EMBEDDED DROPLET PRINTING OF PHARMACEUTICAL PARTICLES
Arif Z. Nelson\(^1\), Jiaxun Xie\(^2\), Saif A. Khan\(^2\), and Patrick S. Doyle\(^3\)
\(^1\)Singapore-MIT Alliance for Research and Technology (SMART) Centre, SINGAPORE,
\(^2\)National University of Singapore, SINGAPORE, and \(^3\)Massachusetts Institute of Technology, USA

Th7-736.d
CHEMOENZYMATIC MICROFLUIDIC CASCADE REACTION: COUPLING OF A DIELS-ALDER REACTION WITH A TRANSKETOLASE-CATALYZED REACTION
Mariana Santos, Brian O'Sullivan, Sarah Müller, Alina Bunescu, Frank Baganz, Marco Marques, Helen Hailes, Nicolas Szita, and Roland Wohlgemuth
University College London, UK
DEVELOPMENT OF SYNTHESIS ROUTES TO HUMAN DRUG METABOLITES USING IMMOBILISED ENZYMATIC REACTIONS WITHIN MICROFLUIDIC REACTORS
Bradley Doyle¹, Leigh Madden¹, Nicole Pamme¹, and Huw Jones²
¹University of Hull, UK and ²University of Bradford, UK

DEVELOPMENT OF AN OPTIC MICRO-RHEOMETER USING MULTILAYER PMMA CARTRIDGES AND MODULAR POLYMERIC MICROPUMPS
Yara Alvarez-Braña¹, Josep Ferre-Torres², Andreu Benavent-Claro², Francisco Palacio-Bonet², Fernando Benito-Lopez¹, Mauricio Moreno-Sereno², Aurora Hernandez-Machado², and Lourdes Basabe-Desmonts¹
¹University of the Basque Country, SPAIN and ²University of Barcelona, SPAIN

A DEVICE FOR URINE CELL CONCENTRATION, LYSIS AND NUCLEIC ACID AMPLIFICATION FOR CHLAMYDIA DETECTION AT THE POINT OF CARE
Steven Bennett, Sujatha Kumar, Erin Heiniger, and Paul Yager
University of Washington, USA

HYBRID MONOLITHS SUPPORTED ON FDM-BASED 3D-PRINTED SCAFFOLDS
Marcella E.P. Schmidt, Lucas P. Bressan, Jose A.F. Silva, and Carla B.G. Bottoli
Chemistry Institute - UNICAMP, BRAZIL

A DISPOSABLE INTEGRATED DIAGNOSTIC DEVICE FOR BLOOD ACQUISITION, SAMPLE PROCESSING, LYSIS, AND DETECTION OF EBOLA VIRUS MARKERS
Sujatha Kumar, Steven Bennett, Shichu Huang, Joshua Buser, and Paul Yager
University of Washington, USA

PRE-CONCENTRATION WITH ELECTROSPUN MEMBRANES COUPLED WITH PAPER-BASED ASSAYS TOWARDS ONSITE MONITORING OF HEAVY METALS IN WATER
Bongkot Ngamsom, Samantha Richardson, Mila Sari, Alexander Iles, Mark Lorch, Will M. Mayes, and Nicole Pamme
University of Hull, UK

A MONOLITHIC WEARABLE SYSTEM DESIGN METHODOLOGY FOR PHYSIOLOGICAL ACTUATION AND ELECTROCHEMICAL SENSING
Hannaneh Hojaiji, Yichao Zhao, Max C. Gong, Mudith Mallajosyula, Amir M. Hojaiji, Asad M. Madni, and Sam Emaminejad
University of California, Los Angeles, USA

ACCELERATED MICROFLUIDIC STUDIES OF SWITCHABLE HYDROPHILICITY SOLVENTS
Suyong Han, Mahdi Ramezani, and Milad Abolhasani
North Carolina State University, USA

AMYLOID β ANALYSIS FROM MICRODISSECTED BRAIN CELLS USING MICROFLUIDICS AND MALDI MASS SPECTROMETRY
Jorvani Cruz Villarreal, Ana Egatz-Gomez, Jiawei Liu, Robert Ros, Paul D. Coleman, and Alexandra Ros
Arizona State University, USA

AN INTEGRATED CENTRIFUGAL DEGASSED PDMS-BASED MICROFLUIDIC DEVICE FOR SERIAL DILUTION
Anyang Wang, Samaneh Moghadasi Boroujeni, Stelios T. Andreadis, and Kwang W. Oh
University at Buffalo, USA
d - Integrated Microfluidic Platforms

Industrial Benefactor

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>W5-538.d</td>
<td>HOLIFAB: MICROFLUIDIC INTEGRATION PILOT LINE AND CAD SOFTWARE FOR COMMERCIALIZATION OF YOUR MICROFLUIDIC SET-UP</td>
<td>Nicolas Lafitte, Mikael Trellet, Ygor Oliveira, Benjamin Rouffet, Serge Renouard, and Jean-Louis Viovy</td>
<td>Holifab/Fluiqent, FRANCE</td>
</tr>
</tbody>
</table>

e - Cells, Organisms and Organs on a Chip

Cell Capture, Counting, & Sorting

<table>
<thead>
<tr>
<th>Paper Code</th>
<th>Title</th>
<th>Authors</th>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>M1-140.e</td>
<td>FULLY-AUTOMATED AND FIELD-DEPLOYABLE BLOOD SEPARATION PLATFORM USING MULTI-DIMENSIONAL DOUBLE SPIRAL (MDDS) INERTIAL MICROFLUIDICS</td>
<td>Hyungkook Jeon and Jongyoon Han</td>
<td>Massachusetts Institute of Technology, USA</td>
</tr>
<tr>
<td>M1-141.e</td>
<td>PORTABLE PLATELET APHERESIS SYSTEM</td>
<td>Lap Man Lee, Ketan H. Bhatt, Dustin W. Haithcock, Balabhaskar Prabhakarpandian, and Kapil Pant</td>
<td>CFD Research Corporation, USA</td>
</tr>
<tr>
<td>M1-142.e</td>
<td>ULTRASENSITIVE DETECTION AND DEPLETION OF RARE LEUKEMIC B CELLS IN T CELL POPULATIONS VIA MICROFLUIDICS-MEDIATED IMMUNOMAGNETIC CELL RANKING</td>
<td>Zongjie Wang and Shana O. Kelley</td>
<td>University of Toronto, CANADA</td>
</tr>
<tr>
<td>M2-239.e</td>
<td>GENTLE TRAP-AND-RELEASE MECHANISM FOR MULTISTEP CELL PROCESSING USING PDMS SPONGE-INTEGRATING MICROFLUIDIC DEVICES</td>
<td>Natsumi Miura, Masumi Yamada, and Minoru Seki</td>
<td>Chiba University, JAPAN</td>
</tr>
<tr>
<td>M2-240.e</td>
<td>RARE CELLS ISOLATION ON SACA CHIP FOR AUTOMATIC CELLS ANALYSIS</td>
<td>Yi-Wen Hu¹, Ping-Hao Yeh¹, Hsin-Yao Wu¹, and Fan-Gang Tseng²</td>
<td>¹National Tsing Hua University, TAIWAN and ²Academia Sinica, TAIWAN</td>
</tr>
<tr>
<td>T3-340.e</td>
<td>HIGH-THROUGHPUT LIVE CELL PRINTING SYSTEM USING NEAR INFRA-RED PULSE LASER</td>
<td>Amos Lee, Wooseok Lee, Yongju Lee, Ahyoun Choi, Sudeok Kim, Kyoung Seob Shin, and Sunghoon Kwon</td>
<td>Seoul National University, KOREA</td>
</tr>
<tr>
<td>T3-341.e</td>
<td>SAFELY SORTING AND ISOLATING RARE SPERM USING DIELECTROPHORESIS BY TRAPPING THE TAIL AND SIMULTANEOUSLY DISTANCING THE HEAD FROM STRONG ELECTRIC FIELDS</td>
<td>Sholom Shuchat¹, Ofer Fainaru², Shahar Kol³, and Gilad Yossifon¹</td>
<td>¹Technion – Israel Institute of Technology, ISRAEL, ²Rappaport Faculty of Medicine, ISRAEL, and ³Elisha Hospital, Haifa Israel, ISRAEL</td>
</tr>
<tr>
<td>T4-439.e</td>
<td>A DROPLET-BASED DETECTION AND SORTING OF CELLS UTILIZING OPTOFLUIDICS AND ELECTRO-COALESCE technique</td>
<td>Ravindra Gaikwad and Ashish K. Sen</td>
<td>Indian Institute of Technology, Madras, INDIA</td>
</tr>
</tbody>
</table>
T4-440.e HIGH-THROUGHPUT SINGLE-CELL QUANTIFICATION OF ELASTIC MODULUS
Ryan Dubay1,2, Jason Fiering1, and Eric M. Darling1
1Brown University, USA and 2Draper, USA

T4-441.e SELECTIVE RETRIEVAL OF INDIVIDUAL CELLS FROM MICROFLUIDIC ARRAYS
COMBINING DIELECTROPHORETIC FORCE AND DIRECTED HYDRODYNAMIC FLOW
Pierre-Emmanuel Thiriet, Joern Pezoldt, Gabriele Gambardella, Kevin Keim, Bart Deplancke,
and Carlotta Guiducci
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

W5-539.e CELL SORTING ACROSS LAMINAR INTERFACE USING STIFFNESS CONTRAST
Shamik Hazra1, Sushanta K. Mitra2, and Ashis Kumar Sen1
1Indian Institute of Technology, Madras, INDIA and 2University of Waterloo, CANADA

W5-540.e LABEL-FREE SINGLE-CELL CAPTURE AND RELEASE VIA A FIRST-IN FIRST-OUT
MICROFLUIDIC CELL ROUTER
Nathaniel K. Liu, Kristina Chan, and Lydia L. Sohn
University of California, Berkeley, USA

W5-541.e SINGLE CELL PER WELL TRAPPING AND ANALYSIS OF CHLAMYDOMONAS REINHARDTII
USING SURFACE ACOUSTIC WAVES
Mingyang Cui, Philip V. Bayly, Susan K. Dutcher, and J. Mark Meacham
Washington University, St. Louis, USA

W6-638.e DEFORMABILITY BASED CELL SORTING AS A BIOMARKER FOR THE QUALITY OF STORED
RED BLOOD CELLS
Emel Islamzada, Kerry Matthews, Erik Lamoureux, Quan Guo, Aline T. Santosco, Mark D. Scott,
and Hongshen Ma
University of British Columbia, CANADA

W6-639.e MICROFLUIDIC MEDIUM EXCHANGER WITH MICROPORED FLUID DRAINAGE FOR CELL
CULTURE APPLICATIONS
Takeru Sato, Yurika Sakurai, Masumi Yamada, and Minoru Seki
Chiba University, JAPAN

W6-640.e SPIRAL MICROFLUIDICS ENHANCED ISOLATION OF EPITHELIAL CELLS FROM INFECTED
MICE URINE
Suhanya Duraiswamy1, Lin Yue Lanry Yung2, and Swaine L. Chen2
1Indian Institute of Technology, Hyderabad, INDIA, 2National University of Singapore, SINGAPORE, and
3Genome Institute of Singapore, SINGAPORE

Th7-738.e FABRICATION OF CMOS-COMPATIBLE GRAPHENE MICROHALL SENSORS FOR MAGNETIC
CYTOMETRY
Nishal Shah, Vasant Iyer, and David Issadore
University of Pennsylvania, USA

Th7-739.e MICROFLUIDIC TRAP ARRAYS FOR PROBING STOCHASTIC IMMUNE-TUMOR DYNAMICS
Michael C. Yeh1,2, Emanuel Salazar Cavazos3, Supriya Padmanabhan1, Grégoire Altan-Bonnet2,
and Don L. DeVoe1
1University of Maryland, College Park, USA and 2National Cancer Institute, USA

Th7-740.e TECHNIQUE FOR PASSIVE DROPLET SORTING AFTER PHOTO-TAGGING
Chandler Dobson, Claudia Zielke, Ching Pan, Cameron Feit, and Paul Abbyad
Santa Clara University, USA
FERTDISH: MICROFLUIDIC SPERM SELECTION-IN-A-DISH FOR ICSI
Sa Xiao, Jason Riordon, Alexander Lagunov, Tom Hannam, Reza Nosrati, and David Sinton
University of Toronto, CANADA

PAIRING CELLS WITH DIFFERENT DIMENSIONS IN A MICROFLUIDIC DEVICE USING A UNIDIRECTIONAL FLOW
Faruk A. Shaik¹, Clara Lewuillon¹, Yasmine Touil¹, Aurélie Guillemette¹, Bruno Quesnel¹, Carine Brinster¹, Loic Lemonnier¹, Dominique Collard², and Mehmet C. Tarhan¹, ³
¹University of Lille, FRANCE, ²University of Tokyo, FRANCE, and ³University Valenciennes, FRANCE

THE EFFECT OF ELEVATED HEMATOCRIT ON HUMAN BLOOD FLOW IN A MICROCHANNEL
Md Ehtashamul Haque¹, Krystian Wlodarczyk¹, Duncan P. Hand¹, Miguel O. Bernabeu², and Maïwenn Kersaudy-Kerhoas¹, ²
¹Heriot Watt University, UK and ²Edinburgh University, UK

- Cells, Organisms and Organs on a Chip

ASSESSING DRUG-INDUCED PHENOTYPICAL CHANGES IN NEURAL PROGENITOR CELLS USING SINGLE-CELL IMPEDANCE CYTOMETRY
Carlos Honrado, Nadine Michel, John H. Moore, Armita Salahi, Veronica Porterfield, Michael J. McConnell, and Nathan S. Swami
University of Virginia, USA

ELECTROROTATION FOR SINGLE CELL ANALYSIS OF MEMBRANE DAMAGE INDUCED BY TOXINS MIMICKING THE NEURODEGENERATIVE EFFECT OF AMYLOID BETA IN THE ALZHEIMER'S DISEASE
Till Ryser, Kevin Keim, Anne-Laure Mahul-Mellier, Hilal Lashuel, and Carlotta Guiducci
École Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND

MICROFLUIDIC HANGING PILLARS ARRAYS FOR SINGLE-CELL ANALYSIS OF OSMOTIC SWELLING DYNAMICS AS PHYSICAL BIOMARKERS
Apresio K. Fajrial, Kun Liu, Yu Gao, and Xiaoyun Ding
University of Colorado, Boulder, USA

SPATIALLY RESOLVED GENOMICS FROM SINGLE CELLS WITH DISTINCT FLUORESCENT SIGNALS USING TRANSPOSASE-BASED DIRECT SEQUENCING LIBRARY PREPARATION
Ahyoun Choi¹, Amos C. Lee¹, Yongju Lee¹, Jinhyun Kim¹, Young Suob Shin¹, Dajeong Jeong², Myoung Hee Ham², Sung-Min Kim³, Okju Kim⁴, Yushin Jung⁴, Changhoe Kim⁴, Taehoon Ryu⁴, Dongsoon Lee², ³, and Sunghoon Kwon¹
¹Seoul National University, KOREA, ²Seoul National University Hospital, KOREA, ³Seoul National University College of Medicine, KOREA, and ⁴Celemics, Inc., KOREA

3D PROJECTION ELECTROPHORESIS FOR HIGH-DENSITY SINGLE-CELL IMMUNOBLOTTING
Samantha M. Grist, Andoni P. Mourdoukoutas, and Amy E. Herr
University of California, Berkeley, USA

BIOMECHANICAL MARKERS FOR MONITORING HETEROGENEITY IN ISLET REORGANIZATION DYNAMICS WITH ADIPOSE STEM CELLS
Karina Torres-Castro, Mohammad S. Azimi, Walter B. Varhue, Carlos Honrado, Shayn M. Pierce-Cottler, and Nathan S. Swami
University of Virginia, USA
M2-243.e HIGH-THROUGHPUT QUANTIFICATION OF SINGLE-CELL CORTICAL TENSION USING MULTIPLE CONSTRUCTION CHANNELS
Ke Wang¹, Yan Liu², Xiaohao Sun³, Deyong Chen⁴, Junbo Wang⁵, and Jian Chen²
¹Beijing University of Posts and Telecommunications, CHINA, ²Chinese Academy of Sciences, CHINA, and ³University of Colorado Boulder, USA

M2-244.e MONITORING THE GROWTH PHASES OF MICROALGAE USING STRAIGHTFORWARD DIELECTROPHORESIS MEASUREMENTS
Yu-Sheng Lin¹, Bruno Le Pioufle², and Hsiang-Yu Wang¹
¹National Tsing Hua University, TAIWAN and ²Université Paris Saclay, FRANCE

M2-245.e SPATIALLY TARGETED WHOLE TRANSCRIPTOME ACCESSIBLE IN SITU SEQUENCING
Kyoungseob Shin¹, Hower Lee², Yongju Lee¹, Ahyoun Choi¹, Amos C. Lee¹, Narayanan Madaboosi², Mats Nilsson³, and Sunghoon Kwon¹
¹Seoul National University, KOREA and ²Stockholm University, SWEDEN

T3-342.e A DUAL IMAGING SYSTEM FOR UNDERSTANDING MICROSWIMMER LOCOMOTION
Farzan Akbaridoust¹, Ivan Marusic², and Reza Nosrati¹
¹Monash University, AUSTRALIA and ²University of Melbourne, AUSTRALIA

T3-343.e CONSTRICTION CHANNEL BASED MICROFLUIDIC SYSTEM OF QUANTIFYING SINGLE-CELL CYTOPLASMIC VISCOITY, CYTOPLASMIC CONDUCTIVITY AND SPECIFIC MEMBRANE CAPACITANCE
Yan Liu¹, Ke Wang², Xiaohao Sun¹, Deyong Chen¹, Junbo Wang¹, and Jian Chen¹
¹Chinese Academy of Sciences, CHINA, ²Beijing University of Posts and Telecommunications, CHINA, and ³University of Colorado Boulder, USA

T3-344.e IMPEDANCE CYTOMETRY OF APOPTOTIC BODIES TO QUANTIFY DRUG SENSITIVITY OF PANCREATIC TUMOR XENOGRAFTS
Carlos Honrado, John H. Moore, Sara J. Adair, Armita Salahi, Todd W. Bauer, and Nathan S. Swami
University of Virginia, USA

T3-345.e MULTIPLEXED RESISTIVE–PULSE SENSING THROUGH CODED NODE–PORE CHANNEL GEOMETRY
Kristen L. Cotner¹ and Lydia L. Sohn¹,²
¹UC Berkeley – UCSF Graduate Program in Bioengineering, USA, ²University of California, Berkeley, USA

T3-346.e VIBRATIONAL FLOW CYTOMETRY ON A CHIP: A LABEL-FREE TOOL FOR METABOLIC PHENOTYPING
Julia Gala de Pablo¹, Matthew Lindley¹, Kotaro Hiramasu¹,², Akihiro Isozaki¹,², and Keisuke Goda¹,³,⁴
¹University of Tokyo, JAPAN, ²Kanagawa Institute of Industrial Science and Technology, JAPAN, ³University of California, Los Angeles, USA, and ⁴Wuhan University, JAPAN

T4-442.e A GENETIC NETWORK FOR THE COMMUNICATION AND SYNCHRONIZATION OF Neurospora crassa
Xiao Qiu, Jia Hwei Cheong, Heinz-Bernd Schüttler, Jonathan Arnold, and Leidong Mao
University of Georgia, USA

T4-443.e DETECTING MULTIPLEX MUTATION IN SINGLE MELANOMA CELLS USING MOLECULAR BEACONS IN LOOP-MEDIATED ISOTHERMAL AMPLIFICATION (MB-LAMP)
Darshna Pagariya, Marcelino Varona, Jared L. Anderson, and Robbyn K. Anand
Iowa State University, USA

T4-444.e MACHINE LEARNING-ENABLED HIGH-SPEED IMPEDANCE CYTOMETRY
Federica Caselli¹, Adele De Ninni², Riccardo Reale¹, Luca Businaro², and Paolo Bisegna¹
¹University of Rome Tor Vergata, ITALY and ²Italian National Research Council, ITALY
T4-445.e OCEAN CARBON CYCLE STUDIED BY SINGLE-CELL IMPEDANCE CYTOMETRY ON CALCIFYING ALGAE
Douwe S. de Bruijn1, Paul M. ter Braak1, Dedmer B. Van de Waal2, Wouter Olthuis1, and Albert van den Berg1
1University of Twente, THE NETHERLANDS and
2Netherlands Institute of Ecology (NIOO-KNAW), THE NETHERLANDS

W5-542.e A HIGH-THROUGHPUT MEMS DEVICE FOR MECHANICAL DETECTION OF CANCER CELLS
Quentin Rezard1,2, Grégoire Perret1,2, Jean Claude Gerbedoen1,3, Deniz Pekin1,4, Dominique Collard1,3, Chann Lagadec1,5, and Mehmet C. Tarhan1,2
1University of Lille, FRANCE, 2University of Valenciennes, FRANCE, 3University of Tokyo, JAPAN, 4JPARC, FRANCE, 5CANTHER, FRANCE

W5-543.e DETERMINISTIC CELL-BEAD AND CELL-CELL PAIRING AND ENCAPSULATION
Rafal Krzyszton, Martin Sauzade, and Eric Brouzes
Stony Brook University, USA

W5-544.e LIGHT-SHEET IN A µTAS FOR SINGLE CELL IMAGING
Erick Vargas-Ordaz, Sergey Gorelick, Adrian de Marco, and Victor J. Cadarso
Monash University, AUSTRALIA

W6-641.e A HYPERBOLIC MICROFLUIDIC IMPEDANCE CHIP FOR DEFORMABILITY CYTOMETRY
Riccardo Reale1, Adele De Ninno2, Luca Businaro2, Paolo Bisegna1, and Federica Caselli1
1University of Rome Tor Vergata, ITALY and 2Italian National Research Council, ITALY

W6-642.e DIRECT QUANTIFICATION OF SINGLE CELL DRUG UPTAKE
Erika J. Fong1, Nick. R. Hum1, Kelly A. Martin1, Melinda Simon2, Gaby G. Loots1, and Ted J. Ognibene1
1Lawrence Livermore National Laboratory, USA and 2San Jose State University, USA

W6-643.e MACROMOLECULE DELIVERY INTO HARD-TO-TRANSEFCT PRIMARY CELLS VIA HYDRODYNAMIC CELL DEFORMATION
Jeongsoo Hur and Aram Chung
Korea University, KOREA

W6-644.e PHENOTYPE BASED SELECTIVE SINGLE CELL ISOLATION USING NEAR-INFRA RED PULSE LASER FOR SPATIALLY RESOLVED OMICS ANALYSIS
Yongju Lee1, Amos C. Lee1, Ahyoun Choi1, Kyoungseob Shin1, Okju Kim2, Yushin Jung2, Changhoe Kim2, Taehoon Ryu1, and Sunghoon Kwon1
1Seoul National University, KOREA and 2Celemics, Inc., KOREA

Th7-741.e A MICROFLUIDIC DEVICE TO MEASURE THE SHEAR ELASTIC MODULUS OF SINGLE RED BLOOD CELLS
Ninad Mehendale1, Savita Kumari1, Priyanka Naik1, Dhrubaditya Mitra2,3, and Debjani Paul1
1Indian Institute of Technology, Bombay, INDIA, 2KTH Royal Institute of Technology, SWEDEN, and 3Stockholm University, SWEDEN

Th7-742.e DROPLET MICROFLUIDICS FOR STUDIES OF BACTERIAL GENETIC TRANSFORMATION IN STREPTOCOCCUS PNEUMONIAE
Trinh Lam, Mark Maireschein-Cline, David T. Eddington, and Donald A. Morrison
University of Illinois, Chicago, USA
Th7-743.e MARKERS FOR ASTROGENESIS IN HETEROGENEOUS NEURAL STEM CELL SAMPLES BY SINGLE-CELL IMPEDANCE CYTOMETRY
John H. Moore¹, Carlos Honrado¹, Armita Salahi¹, Alan Jiang², Andrew Yale², Lisa Flannagan², and Nathan Swami¹
¹University of Virginia, USA and ²University of California, Irvine, USA

Th7-744.e RED BLOOD CELLS AS MODEL PARTICLES WITH MODULATED SUBCELLULAR ELECTROPHYSIOLOGY FOR IMPEDANCE CYTOMETRY
Armita Salahi, Carlos Honrado, and Nathan Swami
University of Virginia, USA

Th8-841.e ACTIVE PARTICLE BASED SELECTIVE TRANSPORT AND RELEASE OF CELL ORGANELLES AND MECHANICAL PROBING OF A SINGLE NUCLEUS
Yue Wu, Afu Fu, and Gilad Yossifon
Technion – Israel Institute of Technology, ISRAEL

Th8-842.e ELECTRICAL SENSING OF SICKLED RED BLOOD CELLS SUBPOPULATIONS IN MICROFLUIDIC DEVICE
Tieying Xu, Maria A. Lizarraled-Iragorri, Jean Roman, Emile Martincic, Valentine Brousse, Olivier François, Wassim El Nemer, and Bruno Le Pioufle
ENS Paris-Saclay, FRANCE

M1-147.e AN ENZYME-FREE AND ULTRAFAST CELL-DISSOCIATION TECHNIQUE FOR CELL CULTURE APPLICATIONS USING ACOUSTOFLUIDICS
Alinaghi Salari, Sila Appak-Baskoy, Imogen R. Cole, Scott S.H. Tsai, and Michael C. Kolios
Ryerson University, CANADA

M1-148.e MODULAR TISSUE ASSEMBLY FOR FABRICATION OF COMPLEX AND SCALED UP TISSUE
Byeongwook Jo, Yuya Morimoto, and Shoji Takeuchi
University of Tokyo, JAPAN

M1-149.e TUNABLE 3D IN VITRO ARTERY-MIMICKING MULTICHANNEL SYSTEM FOR DISEASE MODELING
Minkyung Cho and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

M2-246.e DIRECTING SELF-ORGANIZATION AND DIFFERENTIATION OF STEM CELLS USING A MICROMESH SUSPENSION CULTURE
Kennedy O. Okeyo, Yuta Ando, and Taiji Adachi
Kyoto University, JAPAN
NEW MICROFLUIDIC DESIGNS FOR HIGH-THROUGHPUT ANALYSIS OF ANGIOGENESIS, BLOOD VESSEL PERMEABILITY AND ENDOTHELIAL ACTIVATION
Elise Delannoy1,2, Anthony Treizebre2, and Fabrice Soncin1
1Lille University, FRANCE and 2University Polytechnique Hauts-de-France, FRANCE

Z-WIRE – A MICRO-SCAFFOLD THAT SUPPORTS GUIDED TISSUE ASSEMBLY AND INTRAMYOCARDIUM DELIVERY FOR CARDIAC REPAIR
Luis Eduardo Portillo Esquivel, Vibudha Nanduri, Feng Zhang, Wenbin Liang, and Boyang Zhang
McMaster University, CANADA

FLOW-THROUGH CELL CULTURE SYSTEM USING MICROCAVITIES EMBEDDED IN SPONGELIKE PDMS MATRIX
Maï Takagi, Masumi Yamada, andMinoru Seki
Chiba University, JAPAN

RAPID PROTOTYPING OF CONCAVE MICROWELLS FOR SPHEROID CULTURE BY COMBINING MICROMILLING AND CARAMEL REPLICA MOULDING
Zhiyuan Dong, Bangyong Sun, and Gang Li
Chongqing University, CHINA

3D CO-CULTURED MULTICELLULAR SPHEROIDS ON MICROFLUIDIC CHIP FOR STUDYING ECM-MEDIATED DRUG RESISTANCE
Venkanagouda S. Goudar1, Dr. Long Sheng Lu2, Manohar prasad Koduri1, and Fan-Gang Tseng1
1National Tsing Hua University, TAIWAN and 2Taipei Medical University Hospital, TAIWAN

FORMATION OF CONTRACTILE SKELETAL MUSCLE TISSUE WITH TENDON TISSUE AT BOTH ENDS
Yuya Morimoto, Shigenori Miura, and Shoji Takeuchi
University of Tokyo, JAPAN

REPLICA MOLDING OF THIOL-ENE MICROWELL ARRAYS FOR MICROFLUIDIC 3D CELL SPHEROID CULTURING
Päivi Järvinen1, Sari Tähkälä1, Ashkan Bonabi1, Ville Jokinen2, and Tiina Sikanen1
1University of Helsinki, FINLAND and 2Aalto University, FINLAND

3D PRINTED DEVICE FOR 96-WELL HYDROSTATIC PRESSURE CONTROL
Adam Szmelter and David Eddington
University of Illinois, Chicago, USA

HIGHLY PARALLELIZED HUMAN EMBRYONIC STEM CELL DIFFERENTIATION IN NANOLITER CHAMBERS
Anke R. Vollertsen, Simone A. ten Den, Verena Schwach, Albert van den Berg, Robert Passier, Andries D. van der Meer, and Mathieu Odijk
University of Twente, THE NETHERLANDS

SEQUESTERING EXTRACELLULAR VESICLE PROFILES IN NEUROFLUIDICS
Zeynep Malkoc, Stephanie E. McCalla, and Anja Kunze
Montana State University, USA

A DROPLET MICROFLUIDIC PLATFORM FOR GENERATING STEM CELL-DERIVED AND LONG-LASTING HUMAN LIVER MICROTISSUES
Regeant Panday1, David A. Kukla1, Alexandra L. Crampton2, David K. Wood2, and Salman R. Khetani1
1University of Illinois, Chicago, USA and 2University of Minnesota, USA
W6-646.e INTEGRATED HEPATOCYTE SPHEROID FORMATION AND ENCAPSULATION FOR SYSTEMATIC STUDY OF EXTRACELLULAR MATRIX EFFECT
Shuai Deng, Yan lun Zhu, Xiao yu Zhao, and Hon fai Chan
Chinese University of Hong Kong, CHINA

W6-647.e SIMPLE CHEMICAL GRADIENT GENERATION FOR A SPHEROID CULTURE ARRAY
Panhui Yang, Lei Wu, Hongju Mao, and Janlong Zhao
Chinese Academy of Sciences, CHINA

Th7-745.e A MICROFLUIDIC ORGANOID-TRAPPING DEVICE TO FORM TUBE-LIKE INTESTINAL ORGANOIDs
Miki Matsumoto¹, Yuya Morimoto¹, Toshiro Sato², and Shoji Takeuchi¹
¹University of Tokyo, JAPAN and ²Keio University School of Medicine, JAPAN

Th7-746.e INTERPENETRATING HYDROGEL NETWORK BASED ON 3D-PRINTABLE ENDOTHELIAL CELLS COCULTURED WITH FIBROBLASTS
Soo Jee Kim, Gihyun Lee, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th7-747.e SKIN-EQUIVALENT CULTURE DEVICE FOR APPLYING VERTICAL COMPRESSION
Satoshi Inagaki, Keigo Nishimura, Yuya Morimoto, and Shoji Takeuchi
University of Tokyo, JAPAN

Th8-845.e A SIMPLE METHOD TO ANALYZE NATURAL HYPOXIA EXPRESSION IN JUMBO SPHEROIDS ON-CHIP
Elena Refet-Mollof¹,², Ouafa Najyb², Rodin Chermat¹,², Julie Lafontaine², Philip Wong², and Thomas Gervais¹,²
¹Polytechnique Montréal, CANADA and ²Centre Hospitalier de l’Université de Montréal, CANADA

Th8-846.e MODELING CTC CLUSTERS USING 3D-PRINTED AGAROSE MICROWELLS
Qiyue Luan, Jian Zhou, Celine Macaraniag, and Ian Papautsky
University of Illinois, Chicago, USA

Th8-847.e TIME-LAPSE IMAGING OF MOUSE EMBRYONIC STEM CELLS USING AN AUTOMATED MICROFLUIDIC DEVICE
Adam F. Laing¹, Venkat Tirumala¹, Evan Hegarty¹, Sudip Mondal¹, Peisen Zhao¹, William B. Hamilton², Joshua M. Brickman², and Adela Ben-Yakar¹
¹University of Texas, Austin, USA and ²University of Copenhagen, DENMARK

e - Cells, Organisms and Organs on a Chip

Inter-& Intracellular Signaling, Cell Migration

T3-349.e A CIRCULATING CO-CULTURE MICROFLUIDIC DEVICE FOR THE DYNAMIC SAMPLING OF PARACRINE FACTORS
Emmaline F. Miller¹, Jacy C. Busboom², Joshua J. Clavin¹, Elizabeth C. Martin¹, and Adam T. Melvin¹
¹Louisiana State University, USA and ²University of Wyoming, Laramie, USA

T4-449.e A MODULAR GRANULOMA MODEL FOR MICROENVIRONMENT SIGNALING STUDIES IN VITRO
Maia S. Gower, Samuel B. Berry, Xiaojing Su, Chetan Seshadri, and Ashleigh B. Theberge
University of Washington, USA

W5-549.e DENDRITIC CELL MIGRATION IN 2D CONFINED ENVIRONMENT
Yongjun Choi and Yoon-Kyoung Cho
Ulsan National Institute of Science & Technology (UNIST), KOREA
W6-648.e HIGH THROUGHPUT INTRACELLULAR DELIVERY FACILITATED BY ACOUSTOFLUIDICS
Alinaghi Salari, Sila Appak-Baskoy, Imogen R. Coe, John Abousawan, Costin N. Antonescu, Scott S.H. Tsai, and Michael C. Kolios
Ryerson University, CANADA

Th7-748.e MICROFLUIDIC CHAMBER DEVICE TO TEST QUORUM SENSING THEORY
Jia Hwei Cheong, Xiao Qiu, Yang Liu, James Griffith, Jonathan Arnold, and Leidong Mao
University of Georgia, USA

Th8-848.e MULTIPLEXED END-POINT MICROFLUIDIC CHEMOTAXIS ASSAY USING CENTRIFUGAL ALIGNMENT
Pan Deng¹, Sampath Satti¹, Kerryn Matthews¹, Simon P. Duffy², and Hongshen Ma¹
¹University of British Columbia, CANADA and ²British Columbia Institute of Technology, CANADA

e - Cells, Organisms and Organs on a Chip

Organisms on Chip (C. elegans, Zebrafish, Arabidopsis, etc.)

M1-150.e AN ULTRA-HIGH-DENSITY MICROFLUIDIC PLATFORM TO IMAGE C. ELEGANS FOR HIGH-CONTENT PHENOTYPIC SCREENS
Sudip Mondal, Evan Hegarty, Chris Martin, Sertan K. Gokce, and Adela Ben-Yakar
University of Texas, Austin, USA

M1-151.e MICROFLUIDIC DEVICE TO SCREEN THE ELECTRIC INDUCED BEHAVIORAL RESPONSE OF MULTIPLE ZEBRAFISH LARVAE
Arezoo Khalili, Ellen van Wijngaarden, Khaled Youssef, Georg Zoidl, and Pouya Rezai
York University, CANADA

M2-249.e CONTROLLABLE MICROFLUIDIC ROTATION OF CAENORHABDIS ELEGANS
Peng Pan, John D. Laver, Zhen Qin, Yuxiao Zhou, Ran Peng, Lijun Zhao, Hui Xie, John A. Calarco, and Xinyu Liu
University of Toronto, CANADA

M2-250.e ON-DEMAND DIRECT CURRENT ELECTRIC FIELD IMMOBILIZATION ENABLES HIGH-RESOLUTION IMAGING OF C. ELEGANS
Khaled Youssef¹, Daphne Archonta¹, Terrance J. Kubiseski¹, Anurag Tandon², and Pouya Rezai¹
¹York University, CANADA and ²University of Toronto, CANADA

T3-350.e CONTROLLING THE BODY ORIENTATION OF C. ELEGANS BY EXPLOITING ITS PROPRIOCEPTION IN A MICROFLUIDIC CONFINEMENT FOR BODY WALL MUSCLE IMAGING
Samuel Sofela¹, Sarah Sahlool², Sukanta Bhattacharjee³, and Yong-Ak Song²
¹New York University, UAE, ²New York University Abu Dhabi, UAE, and ³Indian Institute of Technology Guwahati, INDIA

T3-351.e ON-DEMAND SAMPLE SELECTION AND BEHAVIORAL SCREENING OF ACTIVE MICROSWIMMERS ENABLED BY AN OPEN-ACCESSIBLE DEVICE
Gongchen Sun, Cassidy-Arielle Manning, Ga Hyun Lee, and Hang Lu
Georgia Institute of Technology, USA

T4-450.e EFFECT OF MICROFLUIDIC PROCESSING ON THE VIABILITY OF BOAR AND BULL SPERMATOZOA
Tanja Hamacher¹, Johanna T. W. Berendsen¹, Stella A. Kruijt¹, Marleen L.W. J. Broekhuijse²,³, and Loes I. Segerink¹
¹University of Twente, THE NETHERLANDS, ²CRV, THE NETHERLANDS, and ³Topigs Norsvin, THE NETHERLANDS
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>T4-451.e</td>
<td>PARALLEL SCREENING OF SINGLE ZOOSPORE GERMINATION AND GERM TUBE PROTRUSIVE FORCES</td>
<td>Yiling Sun, Ayelen Tayagui, Ashley Garrill, and Volker Nock</td>
<td>University of Canterbury, NEW ZEALAND</td>
</tr>
<tr>
<td>W5-550.e</td>
<td>EGG LAYING NEURON MEDIATES ELECTROSENSATION IN CAENORHABDITIS ELEGANS</td>
<td>Khaled Youssef¹, Daphne Archonta¹, Terrance J. Kubiseski², Anurag Tandon², and Pouya Rezai¹</td>
<td>¹York University, CANADA and ²University of Toronto, CANADA</td>
</tr>
<tr>
<td>W5-551.e</td>
<td>STRAIGHTFORWARD MICROFLUIDIC SYSTEM FOR BEHAVIORAL RESPONSES ANALYSIS OF C. ELEGANS TO PHYSICAL CUES</td>
<td>Sunhee Yoon, Tae-Joon Jeon, and Sun Min Kim</td>
<td>Inha University, KOREA</td>
</tr>
<tr>
<td>W6-649.e</td>
<td>HABITUATION OF ZEBRAFISH LARVAE TO ELECTRICAL STIMULUS</td>
<td>Arezoo Khalili, Ellen van Wijngaarden, Georg R. Zoidl, and Pouya Rezai</td>
<td>York University, CANADA</td>
</tr>
<tr>
<td>Th7-749.e</td>
<td>ELECTRIC FIELD INDUCED C. ELEGANS EGG LAYING IS NEURON-MEDIATED AND DEPENDENT ON FIELD POLARITY</td>
<td>Khaled Youssef¹, Daphne Archonta¹, Terrance J. Kubiseski², Anurag Tandon², and Pouya Rezai¹</td>
<td>¹York University, CANADA and ²University of Toronto, CANADA</td>
</tr>
<tr>
<td>Th8-849.e</td>
<td>IN-VIVO QUANTIFICATION OF DROSOPHILA LARVA HEART FUNCTIONS</td>
<td>Alireza Zabihihesari, Arthur Hilliker, and Pouya Rezai</td>
<td>York University, CANADA</td>
</tr>
</tbody>
</table>

e - Cells, Organisms and Organs on a Chip

Organs on Chip

M1-152.e	A MICROFLUIDICS MODEL OF THE HUMAN PLACENTA	Taisei Amanokura, Takeshi Hori, Norio Kobayashi, Hiroaki Okae, Takahiro Arima, and Hirokazu Kaji	Tohoku University, JAPAN
M1-153.e	FABRICATION AND FLUIDIC INTEGRATION OF SELF-ASSEMBLED CELLULAR MICROTUBULES FOR NEPHRON-ON-CHIP APPLICATIONS	Kevin Tröndle, Ahmad Ili, Fritz Koch, Roland Zengerle, Stefan Zimmermann, and Peter Koltay	University of Freiburg, GERMANY
M1-154.e	LAB-ON-A-CHIP SYSTEM INTEGRATED WITH NANOFIBER MATS FOR BIOCHEMICAL SIMULATION OF HYPOXIA OF CARDIAC CELLS	Anna Kobuszewska, Dominik Kolodziejek, Michal Wojasinski, Tomasz Ciach, Zbigniew Brzozka, and Elzbieta Jastrzebska	Warsaw University of Technology, POLAND
M1-155.e	MODELLING SKIN PRO-INFLAMMATORY RESPONSE IN AN ENGINEERED INFECTED EPIDERMIS MODEL	Maryam Jahanshai, Zhina Hadisi, and Mohsen Akbari	University of Victoria, CANADA
M1-156.e	WOUND-ON-A-CHIP DEVICE FOR HUMAN SKIN HEALING ASSAYS	Kamil Talar¹, Holly N. Wilkinson², Alexander Iles¹, Matthew J. Hardman², and Nicole Pamme³	¹University of Hull, UK and ²Hull York Medical School, UK
M2-251.e A MULTI-CULTURE ARRAY FOR MODELLING NUMEROUS MECHANISMS OF CUTANEOUS DRUG REACTIONS
Lor Huai Chong1, Terry Ching2, Gianluca Grenci3, and Yi-Chin Toh4
1National University of Singapore, SINGAPORE, 2Singapore University of Technology and Design, SINGAPORE, 3Mechanobiology Institute, SINGAPORE, and 4Queensland University of Technology, AUSTRALIA

M2-252.e FROM MODEL SYSTEM TO THERAPY – SCALABLE PRODUCTION OF PERFUSABLE VASCULARIZED LIVER SPHEROIDS IN "OPEN-TOP" 384-WELL PLATE
Dawn S.Y. Lin, Shravanthi Rajasekar, Mandeep K. Marway, and Boyang Zhang
McMaster University, CANADA

M2-253.e LOW-COST OPEN MICROFLUIDIC DEVICE FOR VASCULARIZED SPHEROID-ON-A-CHIP
Qinyu Li, Kai Niu, and Xiaolin Wang
Shanghai Jiao Tong University, CHINA

M2-254.e MODELLING THE TUMOR MICRO-ENVIRONMENT IN HEPATOCELLULAR CARCINOMA USING MULTI-CELLULAR SPHEROIDS
Ana Ortiz Perez, Agnieszka Zuchowska, Jean-Baptiste Blondé, Ruchi Bansal, and Séverine Le Gac
University of Twente, THE NETHERLANDS

T3-352.e A VASCULARIZED MICRO LIVER MODEL SUPPORTS ROBUST ALBUMIN AND CYP450 EXPRESSION BY HUMAN HEPATOCYTES
Satomi Matsumoto, Jennifer S. Fang, Yu-Hsi Chen, Da Zhao, Abraham P. Lee, and Christopher C. Hughes
University of California, Irvine, USA

T3-353.e HEART-LIVER ON A CHIP INTEGRATED WITH A MICROELECTRODE ARRAY TO MONITOR EXTRACELLULAR FIELD POTENTIALS OF CARDIOMYOCYTES
Dongxiao Zhang1, Yoshikazu Hirai1, Ken-ichiro Kamei1, Osamu Tabata2, and Toshiyuki Tsuchiya1
1Kyoto University, JAPAN and 2Kyoto University of Advanced Science, JAPAN

T3-354.e MEASURING BARRIER FUNCTION IN A GUT-ON-CHIP
Elsbeth G.B.M. Bossink, Mariia Zakharova, Mathieu Odijk, and Loes I. Segerink
University of Twente, THE NETHERLANDS

T4-452.e AN ELASTIC PROTEIN MEMBRANE FOR PERFUSABLE MICROFLUIDIC CELL BARRIER MODELLING IN A POLYDIMETHYLSILOXANE-FREE FLEXIBLE CHIP
Lisa D. Muiznieks, Jessica Ayache, Emma Thomée, and Noémi Thomazo
Elvesys - Microfluidics Innovation Center, FRANCE

T4-453.e HEMOSTASIS-ON-A-CHIP: EVALUATING THE EFFICACY OF THROMBIN-CONJUGATED IRON OXIDE NANOPARTICLES FOR PLATELET ACTIVATION IN ORGANO Typic BLOOD VESSELS
Trine University, USA

T4-454.e MECHANICAL STIMULATION INCREASES ECM PRODUCTION BY CHONDROCYTES IN A CARTILAGE-ON-A-CHIP PLATFORM
Carlo Alberto Paggi, Jan Hendriks, Liliana Moreira Teixeira, Marcel Karperien, and Séverine Le Gac
University of Twente, THE NETHERLANDS
T4-455.e ORAL MUCOSA-CHIP AS AN ALTERNATIVE PLATFORM TO EVALUATE THE IMPACTS OF DENTAL MONOMERS
Khanh Ly1, Seyed Rooholghodos1, Christopher Rahimi1, Benjamin Rahimi1, Diane R. Bienek2, Gili Kaufman2, Christopher Raub1, and Xiaolong Luo1
1Catholic University of America, USA and 2ADA Science and Research Institute, USA

W5-552.e CANCER METASTASIS RECAPITULATED IN THREE-DIMENSIONAL HUMAN LIVER-CHIP
Jooyoung Ro, Junyoung Kim, Chaeueun Lee, and Yoon-Kyoung Cho
Ulsan National Institute of Science & Technology (UNIST), KOREA

W5-553.e MEMS ACTUATION PROMOTES IN VITRO BRAIN-ON-CHIP MATURATION
Alex J. Bastiaens1, Gülden Akçay1, Maaike Fransen1, Sijia Xie2, and Regina Luttge1
1Eindhoven University of Technology, THE NETHERLANDS and 2Paul Scherrer Institute, SWITZERLAND

W5-554.e RECONSTITUTING THE ARTERIAL INTIMA-MEDIA INTERFACE USING A DUAL-LANE EXTRACELLULAR MATRIX PATTERNED MICROFLUIDIC 3D CO-CULTURE PLATFORM FOR STUDY OF ATHEROSCLEROSIS
Chengxun Su, Nishanth Venugopal Menon, Xiaohan Xu, Yu Rong Teo, Huan Cao, Rinkoo Dalan, Chor Yong Tay, and Han Wei Hou
Nanyang Technological University, SINGAPORE

W6-650.e A 3D MICROPATTERNED NEURONAL CULTURE PLATFORM USING EXTRACELLULAR MATRIX-BASED HYDROGEL ON A MICROELECTRODE ARRAY
Dongjo Yoon, Jaejung Son, Je-Kyun Park, and Yoonkey Nam
Korea Advanced Institute of Science and Technology (KAIST), KOREA

W6-651.e CONTINUOUS MONITORING OF ISOGENIC BLOOD-BRAIN BARRIER INTEGRITY IN A PDMS-FREE MICROPHYSIOLOGICAL SYSTEM
Thomas E. Winkler1, Isabelle Matthiesen1, Dimitrios Voulgaris1, Polyxeni Nikolakopoulou2, and Anna Herland1
1KTH Royal Institute of Technology, SWEDEN and 2Karolinska Institute, SWEDEN

W6-652.e INTEGRATED ANISOTROPIC TUBULAR CARDIAC TISSUE AND CIRCULATING MICRO-CHANNEL SYSTEM FOR DRUG TESTING
Bo-Heng Liu and Fan-Gang Tseng
National Tsing Hua University, TAIWAN

W6-653.e MICROFLUIDIC MODELING OF NEURAL TUBE ANTERIOR-POSTERIOR PATTERNING USING STEM CELLS
Xufeng Xue and Jianping Fu
University of Michigan, Ann Arbor, USA

W6-654.e SECRETOME ANALYSIS WITH SIMULTANEOUS ON-CHIP ANGIGENESIS AND ANASTOMOSIS BETWEEN HUMAN ARTERIAL AND VENOUS ENDOTHELIAL CELLS
Elisabeth Hirth1, Claudius Dietsche1, Todd Duncombe1, Danilo Ritz2, Maria Filippova2,3, and Petra S. Dittrich1
1ETH Zürich, Basel, SWITZERLAND, 2University of Basel, SWITZERLAND, and 3University Hospital, SWITZERLAND

Th7-750.e A 3D-PRINTED MODULAR MICROCHIP TO MODEL INTER-ORGAN COMMUNICATION
Sophie R. Cook and Rebecca R. Pompano
University of Virginia, USA

Th7-751.e DEVELOPMENT OF CLOSED AND PUMPLESS PLATFORM FOR CO-CULTURE IN MINIMALIZED SPACE
Hidetaka Ueno1, Yuri Aoki2, Kenji Hanamura2, Mai Yamamura2, Tomoaki Shirao2, and Takaaki Suzuki2
1National Institute of Advanced Industrial Science and Technology (AIST)
INTEGRATING PANCREAS TISSUE SLICES WITH ADVANCED ANALYTICAL APPROACHES FOR MEASUREMENT OF INSULIN RELEASE
I-An Wei and Michael G. Roper
Florida State University, USA

MICROFLUIDICS AND IMMUNOTHERAPY: MODELLING SOLID TUMORS
Jose M. Ayuso, Maria Virumbrales-Munoz, Patrick H. McMinn, Shujah Rehman, Cate Fitzgerald, Melissa C. Skala, and David J. Beebe
University of Wisconsin, USA

SOFT STRETCHABLE BIOLOGICAL MEMBRANES FOR ORGANS-ON-CHIP
Pauline Zamprogno1, Giuditta Thoma1, Veronika Cencen2, Dario Ferrari1, Barbara Putz3, Johann Michler3, Georg E. Fantner2, and Olivier T. Guenat1,4
1University of Bern, SWITZERLAND, 2Ecole Polytechnique Fédérale de Lausanne (EPFL), SWITZERLAND, 3EMPA Swiss Federal Laboratories for Materials Science and Technology, SWITZERLAND, and 4University Hospital of Bern, SWITZERLAND

A LIVER-IN-CHIP PLATFORM FOR PRESERVING EX VIVO TISSUE VIABILITY
Foivos Chatzidimitriou, Joseph M. Sherwood, Soon Seng Ng, S. Tamir Rashid, and Darryl R. Overby
Imperial College London, UK

EFFECT OF SHEAR STRESS ON THE EXPRESSION OF FUNCTIONAL PROTEINS IN A BILAYER PROXIMAL TUBULE-ON-A-CHIP
Ramin Banan Sadeghian, Ryohei Ueno, Toshikazu Araoka, Jun Yamashita, Tatsuji Enoki, Minoru Takasato, and Ryuji Yokokawa
Kyoto University, JAPAN

INVESTIGATING DRUG-INDUCED AUTOPHAGY IN A MICROFLUIDIC MODEL OF GLIOBLASTOMA
Ehsan Samiei1, Saeid Ghavami2, and Mohsen Akbari1
1University of Victoria, CANADA and 2University of Manitoba, CANADA

MICROPILLAR-BASED MICROFLUIDIC SYSTEM FOR STUDIES OF 3D PANCREATIC ISLET STRUCTURES
Patrycja Sokolowska, Anna Grabowska, Kamil Zukowski, Zbigniew Brzozka, and Agnieszka Dobrzyn
Warsaw University of Technology, POLAND

SYNOVIAL MEMBRANE ON CHIP: A NEW TOOL TO STUDY CO-CULTURE RESPONSE TO MECHANICAL STIMULATION
Carlo Alberto Paggi, Mariia Zakharova, Loes Segerink, Séverine Le Gac, Liliana Moreira-Teixeira, and Marcel Karperien
University of Twente, THE NETHERLANDS

FORMATION OF A NEURON-MUSCLE CONSTRUCT USING NEURAL CELL FIBERS AND SKELETAL MUSCLE TISSUE FOR BIOHYBRID ACTUATORS
Akihiro Sunagawa1, Midori Negishi2, Minghao Nie1, Yuya Morimoto1, and Shoji Takeuchi1
1University of Tokyo, JAPAN and 2Musashino University, JAPAN

A NEW PLATFORM FOR CULTURE AND ELECTROPORATION OF 3D CELL CONSTRUCTS BASED ON A POROUS SCAFFOLD
Marie Frénéa-Robin, Julien Marchalot, Laure Franqueville, and Charlotte Rivière
University of Lyon, FRANCE
M2-256.e RECAPITULATING CYCLIC STRETCH IN MICROVASCULATURE BY FLOW-INDUCED CUES IN HYDROGEL MICROCHANNELS
Walter B. Varhue, Aditya Rane, Shayn Peirce-Cottler, George Christ, and Nathan Swami
University of Virginia, USA

T3-356.e ACTOMYOSIN-COLLAGEN HYBRID SOFT ACTUATOR
Kenjiro Kohno1, Shusei Kawara1, Yuichi Hiratsuka2, and Hiroaki Onoe1
1Keio University, JAPAN and 2Japan Advanced Institute of Science and Technology (JAIST), JAPAN

T3-357.e THE INFLUENCE OF SHEAR STRESS GENERATED BY OSMOTIC DRIVEN FLOW ON THE ALIGNMENT OF ENDOTHELIAL CELL
Zong-Han Sie1, Lu-Wei Wu1, Yen-Yu Chang1, Yi-Chin Toh2, and Ya-Yu Chiang3
1National Chung-Hsing University, TAIWAN and 2Queensland University of Technology, AUSTRALIA

T4-456.e ANTI-BIOFOULING SURFACES FEATURED WITH MAGNETIC ARTIFICIAL CILIA
Shuaizhong Zhang1, Pan Zuo1, Ye Wang1, Patrick Onck2, and Jaap den Toonder1
1Eindhoven University of Technology, THE NETHERLANDS and 2University of Groningen, THE NETHERLANDS

W5-555.e ZINC OXIDE NANOPILLARS INHIBIT BACTERIAL ATTACHMENT
Nicholas Lin, Amin Valiei, Nathalie Tufenkji, and Christopher Moraes
McGill University, CANADA

W6-655.e CELL-BASED SENSOR INTEGRATED IN OPTICAL FIBER TOWARD MONITORING OF NEUROTRANSMITTERS
Hisashi Shimizu1, Yuichi Morohashi2, Yoko Yazaki-Sugiyama2, and Shoji Takeuchi1
1University of Tokyo, JAPAN and 2Okinawa Institute of Science and Technology Graduate University, JAPAN

Th7-755.e CROSSLINKING AEROSOL-BASED MULTI-BIOINK PRINTING SYSTEM TO CONSTRUCT HETEROGENEOUS AND MULTILAYERED HYDROGELS
Gihyun Lee, Soo Jee Kim, and Je-Kyun Park
Korea Advanced Institute of Science and Technology (KAIST), KOREA

Th8-855.e EXOSKELETAL BIOHYBRID ROBOT USING ANTAGONISTIC XENOPUS MUSCLE
Jinhwa Lee1, Yuya Morimoto1, Masahiro Shimizu2, and Shoji Takeuchi1
1University of Tokyo, JAPAN and 2Osaka University, JAPAN

e - Cells, Organisms and Organs on a Chip

Synthetic Biology

T4-457.e CELL-FREE LOW-COST DE NOVO BACTERIOPHAGE GENOME SYNTHESIS FROM SEQUENCE-VERIFIED MICROARRAY-SYNTHESIZED DNA OLIGONUCLEOTIDES
Huiran Yeom1, Taehoon Ryu2, Namphil Kim3, and Sunghoon Kwon1
1Seoul National University, KOREA and 2Celemics, Inc, KOREA

W5-556.e DNA NANOBALL RETRIEVAL MICROCHIP DESIGN FOR HIGH-THROUGHPUT ERROR-FREE DNA PURIFICATION PLATFORM
Namphil Kim, Huiran Yeom, Yonghee Lee, and Sunghoon Kwon
Seoul National University, KOREA

W6-656.e DROPLET MICROFLUIDIC MICROCOLONY SORTING BY FLUORESCENCE AREA FOR HIGH THROUGHPUT, YIELD-BASED SCREENING OF TRIACYL GLYCERIDES IN S. CEREVISIAE
Sara M. Björk, Martin G. Schappert, and Haakan N. Joensson
KTH Royal Institute of Technology, SWEDEN
Th7-756.e
INTRACELLULAR SENSING OF EXPRESSED FACTORS BY REDOX AMPLIFICATION USING BIO-CAPACITOR ON NANOPOROUS GOLD
Yi Liu, John H. Moore, and Nathan S. Swami
University of Virginia, USA

Th8-856.e
RT-OGENE: A REAL-TIME OPTOGENETICS SYSTEM FOR CONTROLLING GENE EXPRESSION USING MODEL-BASED DESIGN
James M. Perry, Guy Soffer, and Steve C.C. Shih
Concordia University, CANADA

e - Cells, Organisms and Organs on a Chip

Liposomes/Membranes

M1-158.e
AN APROTIC POLAR SOLVENT ASSISTED SIZE-TUNING METHOD FOR MICROFLUIDIC PRODUCTION OF LIPID-BASED DRUG NANOCARRIERS WITH VARIOUS SIZES
Niko Kimura, Masatoshi Maeki, Akihiko Ishida, Hirofumi Tani, and Manabu Tokeshi
Hokkaido University, JAPAN

M2-257.e
MICROFLUIDIC FORMATION OF LIPID-OUT ASYMMETRIC DROPLET INTERFACE BILAYERS FOR ON-CHIP PHARMACOKINETICS MODELLING
Elanna B. Stephenson and Katherine S. Elvira
University of Victoria, CANADA

T3-358.e
PLASMONIC STRUCTURES FOR CLINICAL-SCALE EXOSOME ANALYSIS
Felix Kurth, Luc Driencourt, Fabian Lütolf, Rolando Ferrini, and Silvia Generelli
CSEM, SWITZERLAND

T4-458.e
THE BOTTOM-UP SYNTHESIS OF BESPOKE PROTOTISSUES USING A MICROFLUIDIC PLATFORM
Kaitlyn Elizabeth E. Ramsay, Jae Levy, Pierangelo Gobbo, and Katherine Elvira
University of Victoria, CANADA

e - Cells, Organisms and Organs on a Chip

Other Applications in Biology

W5-557.e
AN ACOUSTIC-ELECTRICAL SHEAR OPENING PORATION (AESOP) PLATFORM FOR INTRACELLULAR DELIVERY
Yu-Hsi Chen, Mohammad Aghaamoo, and Abraham Lee
University of California, Irvine, USA

W6-657.e
DEVELOPMENT OF NOVEL SCREENING PLATFORM AND ORGANOID CULTURE MODEL FOR QUANTIFIABLE HIGH THROUGHPUT SCREENING OF TUMOR ORGANOID.
Yong Hun Jung, Donghee Choi, Kyungwon Park, Satbyol Lee, Hyunwoo Chung, Jihun Yang, Jinah Kim, Byungsoh Min, and Seok Chung
Korea University, KOREA

Th7-757.e
MICROFLUIDIC INTRACELLULAR DELIVERY VIA FLUID CELL SHEARING
GeoumYoung Kang, Chan Kwon, and Aram Chung
Korea University, KOREA

Th8-857.e
ORGANOSILICON INTERACTION WITH BIOLOGICAL MEMBRANES
Pepijn Beekman, Agustín Enciso-Martínez, Sidharam Pujari, Han Zuilhof, Leon Terstappen, Cees Otto, and Séverine Le Gac
University of Twente, THE NETHERLANDS
CUSTOMIZABLE MICROFLUIDIC DEVICES FOR CO-CULTURE AND ALI RECREATION: BE-DoublesFlow & BE-TransFlow
Sandra González Lana1,2, Lara Pancorbo Lambán1, Sara Aldea Martín1, Luis E. Serrano Ramón1, and Rosa M. Monge Prieto1
1BEOnChip S.L., SPAIN and 2University of Zaragoza, SPAIN

ISOLATION OF ALZHEIMER'S DISEASE ASSOCIATED EXOSOMES USING GRAPHENE OXIDE-BASED MICROFLUIDIC CHIP WITH PREFIBRILLAR AMYLOID β (AbExoChip)
Yoon-Tae Kang, Ji-Young Kim, Thomas Hadlock, Andrew Rellinger, Nicholas A. Kotov, and Sunitha Nagrath
University of Michigan, Ann Arbor, USA

CHARACTERIZATION OF EXTRACELLULAR VESICLES PURIFIED BY ULTRACENTRIFUGATION, SIZE-EXCLUSION CHROMATOGRAPHY AND LAB-ON-A-DISC FILTRATION
Lucile F.T. Alexandre1,2, Philippe DeCorwin-Martin1, Rosalie Martel1, Molly Shen1, Johan Renault, Lorenna Oliveira Fernandes de Araujo1, Andy Ng1, and David Juncker1
1McGill University, CANADA and 2Institut Curie, CANADA

MOLECULAR AND FUNCTIONAL EXTRACELLULAR VESICLE ANALYSIS USING NANO-PATTERNED MICROCHIPS Monitors Tumor Progression and Metastasis
Peng Zhang1,2, Chaoyong Yang2, and Yong Zeng1
1University of Kansas, USA and 2Shanghai Jiaotong University School of Medicine, CHINA

DETERMINISTIC LATERAL DISPLACEMENT FOR THE SORTING OF EXTRACELLULAR VESICLES FROM COMPLEX BIOLOGICAL SAMPLES
Marie Gaillard, Nicolas Sarrut-Rio, Léopold Virot, François Boizot, Nicolas Verplanck, Camille Raillon, Vincent Agache, Yoann Roupioz, and Aurélie Thuaire
University Grenoble Alpes, FRANCE

PRECISION METERED DRIED BLOOD SPOTS BY USING TUNABLE HYDROPHOBIC BURST VALVES
Lorenz Van Hileghem, Dries Vloemans, Francesco Dal Dosso, and Jeroen Lammertyn
KU Leuven, BELGIUM

EFFICIENT HUMAN PLASMA EXTRACTION FROM UNDILUTED WHOLE BLOOD BY CELL-FREE LAYER MARGINATION WITH CLOSED-LOOP SINGLE MICROFLUIDIC CHANNEL DEVICE
Lap Man Lee, Ketan H. Bhatt, Dustin W. Haithcock, Mary A. Arugula, Balabhaskar Prabhakarpandian, and Kapil Pant
CFD Research Corporation, USA

TEM GRID PREPARATION WITH MINIMAL USER INTERACTION
Janosch Hauser1, Gustaf Kyllberg2, Göran Stemme1, Ida-Maria Sintorn2, and Niclas Roxhed1
1KTH Royal Institute of Technology, SWEDEN and 2Vironova AB, SWEDEN

EXOSOME ISOLATION VIA CLICK CHEMISTRY (EXOClick) CHIP FOR SCREENING AND QUANTIFICATION OF CANCER-ASSOCIATED EXOSOMES
Yoon-Tae Kang, Thomas Hadlock, Shruti Jolly, and Sunitha Nagrath
University of Michigan, Ann Arbor, USA
<table>
<thead>
<tr>
<th>Track</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>W6-659.f</td>
<td>EXTRACELLULAR VESICLE DETECTION DIRECTLY IN COMPLEX MATRICES BY USING FO-SPR SENSOR</td>
<td>Yagmur Yildizhan, Venkata Suresh Vajrala, Charles Declerck, Edward Geeurickx, Sam Noppen, Dominique Schols, Johannes V. V. Swinnen, Sven Eyckerman, An Hendrix, Jeroen Lammertyn, and Dragana Spasic</td>
<td>KU Leuven, BELGIUM and Gent University, BELGIUM</td>
</tr>
<tr>
<td>Th7-758.f</td>
<td>HARVESTING BIOMOLECULES FROM TISSUE BY POROUS SILICON NANONEEDLES</td>
<td>Davide A. Martella and Ciro Chiappini</td>
<td>King’s College London, UK</td>
</tr>
<tr>
<td>Th8-858.f</td>
<td>INKJET-PRINTED 3D NANO-ENGINEERED MICROCHIPS FOR FUNCTIONAL ANALYSIS OF METASTATIC EXOSOMES</td>
<td>Yong Zeng, Peng Zhang, and Liang Xu</td>
<td>University of Florida, USA and University of Kansas, USA</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>f - Diagnostics, Drug Testing & Personalized Medicine</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nucleic-Acid Analysis</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M1-160.f</td>
<td>EVALUATION OF DLP 3D PRINTING MATERIALS FOR THE MANUFACTURE OF RECOMBINASE POLYMERASE AMPLIFICATION (RPA) MICROREACTORS</td>
<td>Ole Behrmann, Matthias Hügle, Franz Eckardt, Iris Bachmann, Frank T. Hufert, and Gregory Dame</td>
<td>Brandenburg Medical School Theodor Fontane, GERMANY</td>
</tr>
<tr>
<td>M2-260.f</td>
<td>METAL OXIDE NANO WIRES MICROFLUIDIC DEVICES FOR DNA METHYLATION MAPPING</td>
<td>Marina Musa, Takao Yasui, Taisuke Shimada, Akihide Arima, and Yoshinobu Baba</td>
<td>Nagoya University, JAPAN</td>
</tr>
<tr>
<td>T3-361.f</td>
<td>MICRORNA DETECTION USING STRAND DISPLACEMENT AMPLIFICATION IN HYDROGEL PARTICLES</td>
<td>Nidhi Juthani and Patrick S. Doyle</td>
<td>Massachusetts Institute of Technology, USA</td>
</tr>
<tr>
<td>T4-461.f</td>
<td>NAKED-EYE DETECTION OF POLYMERASE CHAIN REACTION ON MICROFLUIDICS</td>
<td>Ren Shen, Yanwei Jia, Pui-In Mak, and Rui P. Martins</td>
<td>University of Macau, CHINA</td>
</tr>
<tr>
<td>W5-559.f</td>
<td>AUTOMATION OF THE PAPER-BASED VERTICAL FLOW PLATFORM FOR RADIATION BIODOSIMETRY DURING DEEP SPACE MISSION</td>
<td>Jasmine P. Devadhasan, Paul Kuehl, Jerome Lacombe, Jana Stoudemire, Twyman Clements, Jian Gu, and Frederic Zenhausern</td>
<td>Postdoctoral Research Associate, USA</td>
</tr>
<tr>
<td>W5-560.f</td>
<td>OE-PCR IN DROPLETS FOR RAPID CONVERSION OF ANTIBODY LIBRARIES</td>
<td>Micaela Vitor, Lucas Pereira, Guillaume Mottet, Emmanuelle Vigne, and Melody Shahsavarian</td>
<td>Sanofi, FRANCE and L’École Supérieure de Physique et de Chimie Industrielles (ESPCI), FRANCE</td>
</tr>
<tr>
<td>W6-660.f</td>
<td>CENTRIFUGAL MICROFLUIDIC 4-PLEX DIGITAL DROPLET PCR FOR QUANTIFICATION OF CIRCULATING TUMOR DNA</td>
<td>Franziska Schlenker, Elena Kipf, Nadine Borst, Tobias Hutzenlaub, Nils Paust, Roland Zengerle, Felix von Stetten, and Peter Juelg</td>
<td>Hahn-Schickard, GERMANY and University of Freiburg, GERMANY</td>
</tr>
<tr>
<td>Session</td>
<td>Title</td>
<td>Authors</td>
<td>Affiliations</td>
</tr>
<tr>
<td>---------</td>
<td>---</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>W6-661.f</td>
<td>REAGENT INTEGRATION IN DISPOSABLE THERMOPLASTIC 2D MICROWELL ARRAYS USING A CUSTOM SPOTTING PIN</td>
<td>Supriya Padmanabhan, Micaela Everitt, Michael Yeh, Ian White, and Don L. DeVoe</td>
<td>University of Maryland, College Park, USA</td>
</tr>
<tr>
<td>Th7-759.f</td>
<td>COMPLEX NUCLEIC ACID HYBRIDIZATION REACTIONS INSIDE CAPILLARY-DRIVEN MICROFLUIDIC CHIPS</td>
<td>Marie L. Salva, Marco Rocca, Yong Hu, Emmanuel Delamarche, and Christof M. Niemeyer</td>
<td>Karlsruhe Institute of Technology, Germany and IBM Research Europe, Switzerland</td>
</tr>
<tr>
<td>Th7-760.f</td>
<td>UNRAVELLING THE REACTION MECHANISM AND KINETICS OF DNAYZYMES BASED ON BULK AND SINGLE MOLECULE STUDIES</td>
<td>Aida Montserrat Pagès, Phebe De Keyser, Victor Top, Rebecca Andrews, Maarten Hertog, Achilles N. Kapanidis, Dragana Spasic, and Jeroen Lammertyn</td>
<td>KU Leuven, Belgium and Oxford University, UK</td>
</tr>
<tr>
<td>Th8-859.f</td>
<td>DIGITAL AND MULTIPLE MIRCORNA DETECTION WITH MICROCOMPARTMENTALIZED BEAD ASSAY</td>
<td>Thomas Jet, Guillaume Gines, Alexis Moravic, Yannick Rondelez, and Valérie Taly</td>
<td>Université de Paris, France and ESPCI Paris, France</td>
</tr>
<tr>
<td>M1-161.f</td>
<td>AUTOMATING NANODROPLET SAMPLE PREPARATION WITH LIQUID CHROMATOGRAPHY-MASS SPECTROMETRY FOR HIGH THROUGHPUT SINGLE-CELL PROTEOMICS</td>
<td>Ying Zhu</td>
<td>Pacific Northwest National Laboratory, USA</td>
</tr>
<tr>
<td>M1-162.f</td>
<td>TIME-RESOLVED MICROFLUIDIC SAMPLE PREPARATION FOR CRYO-EM STRUCTURAL ANALYSIS OF BIOMOLECULAR ASSEMBLIES</td>
<td>Byungjin Lee, Märt-Erik Mäetys, Matthias Peter, Sung Sik Lee, Radoslav Enchev Ivanov, and Chang-Soo Lee</td>
<td>Chungnam National University, Korea, Francis Crick Institute, UK, and ETH Zürich, Switzerland</td>
</tr>
<tr>
<td>M2-261.f</td>
<td>BIOASSAY ARCHITECTURE COMBINING A QUANTITATIVE G6PDH ASSAY AND A MEASUREMENT OF HEMOGLOBIN CONCENTRATION ON A SINGLE CAPILLARY-DRIVEN MICROFLUIDIC CHIP</td>
<td>Marco Rocca, Yuksel Temiz, Marie L. Salva, Samuel Castonguay, Thomas Gervais, Christof M. Niemeyer, and Emmanuel Delamarche</td>
<td>IBM Research Europe, Switzerland, Karlsruhe Institute of Technology (KIT), Germany, and École Polytechnique de Montréal (EPF), Canada</td>
</tr>
<tr>
<td>T3-362.f</td>
<td>DETECTION OF MULTIPLE SEPSIS BIOMARKERS USING A MICROFLUIDIC FLOW CYTOMETER</td>
<td>Xilong Yuan, Todd Darcie, Srishthi Garg, James Dou, Lu Chen, and J. Stewart Aitchison</td>
<td>University of Toronto, Canada</td>
</tr>
<tr>
<td>T4-462.f</td>
<td>DROPLET MICROFLUIDICS BASED ENZYMATIC DIGESTION: A NEW SAMPLE PREPARATION TOOL FOR MALDI-TOF MS</td>
<td>Mathilde Richerd, Sarah Bregant, Florent Malloggi, and Stéphanie Descroix</td>
<td>PSL Research University, France and Université Paris Saclay, France</td>
</tr>
</tbody>
</table>
ELISA UTILIZING THIN-LAYERED CHANNEL FOR PERFECT CAPTURE AND ACCUMULATION OF TARGET MOLECULE
Ryoichi Ohta¹, Keisuke Sekiya¹, Smirnova Aderina¹, Emi Mori¹, and Takehiko Kitamori¹²
¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN

PICO-LITER PROTEIN DIGESTION AND SEPARATION USING NANOFLUIDIC DEVICE
Kyojiro Morikawa, Koki Yamamoto, Hiroki Sano, Yutaka Kazoe, Hisashi Shimizu, Hiroyuki Imanaka,
Koreyoshi Imamura, and Takehiko Kitamori
University of Tokyo, JAPAN

IN SITU NMR LAB-ON-A-CHIP SYSTEM FOR STUDYING PROTEIN-LIGAND INTERACTIONS
Marek Plata, William Hale, Manvendra Sharma, Joern M. Werner, and Marcel Utz
University of Southampton, UK

AUTOMATED CHIP-BASED THIN-LAYERED ELISA
Adelina Smirnova¹, Ryoichi Ohta¹, and Takehiko Kitamori¹²
¹University of Tokyo, JAPAN and ²National Tsing Hua University, TAIWAN

LOCALIZED MULTIPLEXED SURFACE FUNCTIONALIZATION OF THERMOPLASTIC MICROCHANNELS TOWARDS THE ENRICHMENT AND PROTEIN CARGO ANALYSIS OF EXTRACELLULAR VESICLES
André Kling, Yannick R.F. Schmid, Jonas Nikoloff, and Petra S. Dittrich
ETH Zürich, SWITZERLAND

PATIENT-DERIVED KIDNEY CANCER MODELS ON-A-CHIP TO INFORM PRECISION ONCOLOGY
Maria Virumbrales-Munoz, Jiong Chen, Jose Ayuso, Erwin J. Abel, and David J. Beebe
University of Wisconsin, Madison, USA

A BIO-MICROCHIP FUNCTIONALIZED BY SELF-ASSEMBLED AUNPS FOR EFFICIENT CAPTURE AND RELEASE OF CIRCULATING TUMOR CELLS
Yixing Gou, Zheng You, Changku Sun, and Dahai Ren
Tianjin University, CHINA

QUANTIFICATION OF PROTEIN EXPRESSION LOCALLY ON FROZEN TISSUE SECTIONS TO EVALUATE TUMOR HETEROGENEITY
Anna Fomitcheva Khartchenko¹, Peter Schraml², and Govind V. Kaigala³
¹ETH Zürich, SWITZERLAND, ²University Hospital Zurich, SWITZERLAND, and ³IBM Research – Europe, SWITZERLAND

ACOUSTIC MICROSTREAMING CAPTURE OF CIRCULATING TUMOR CELLS AND CIRCULATING CANCER ASSOCIATED FIBROBLASTS AND FUNCTIONAL IMMUNE ASSESSMENT FROM BREAST CANCER PATIENTS
Ruoyu Jiang, Sudhanshu Agrawal, Ritesh Parajuli, Anshu Agrawal, and Abraham Lee
University of California, Irvine, USA

SACA CHIP ENABLED CIRCULATING TUMOR CELL CLUSTERS PHENOTYPING FOR CANCER IMMUNOTHERAPY RESPONSE MONITORING
Chun-Jieh Hsu¹, Chun-Wei Lee¹, Jen-Kuei Wu², Kang-Yun Lee³, Po-Hao Feng³, Wei-Chiao Chang³,
Fan-Gang Tseng³, and Yu-Chia Kan¹
¹National Tsing Hua University, TAIWAN, ²Academia Sinica, TAIWAN, and ³Taipei Medical University, TAIWAN
T4-463.f CREATING AN IN VITRO LUNG MICROENVIRONMENT VIA DNA-DIRECTED PATTERNING TO INVESTIGATE THE ROLE OF EXTRACELLULAR VESICLES IN METASTASIS
Sean E. Kitayama and Lydia L. Sohn
University of California, Berkeley, USA

T4-464.f TUMOR-AGNOSTIC MICROFLUIDIC ISOLATION OF CIRCULATING TUMOR CELLS FROM LEUKAPHERESIS PRODUCTS
Avanish Mishra1,2, Taronish D. Dubash1,2, Jon F. Edd1, Michelle K. Jewett1, Suhaas G. Garre1, Nezhi Murat Karabacak1,2, Daniel C. Rabe1,2, Baris R. Mutlu1,2, John R. Walsh1, Ravi Kapur4, Shannon L. Stott1,2, Shyamala Maheswaran1,2, Daniel A. Haber1,2,3, and Mehmet Toner1,2,3
1Massachusetts General Hospital, USA, 2Harvard Medical School, USA, 3Shriners Hospitals for Children, USA, 4MicroMedicine, Inc., USA, 5Howard Hughes Medical Institute, USA

W5-562.f HIERARCHICAL HERRINGBONE MICROWELLS FOR HIGH-THROUGHPUT SINGLE CELL ENTRAPMENT
Ayoub Glia, Pavithra Sukumar, Muhammedin Deliorman, and Mohammad A. Qasaimeh
New York University Abu Dhabi, UAE

W5-563.f WHOLE GENOME SEQUENCING OF SINGLE CIRCULATING TUMOR CELLS AFTER THEIR SIZE-BASED ENRICHMENT
Wooseok Lee, Amos C. Lee, Yongju Lee, Ahyoun Choi, Sudeok Kim, and Sunghoon Kwon
Seoul National University, KOREA

W6-663.f MICRODISSECTED TUMOR TISSUE HAS LOWER HYPOXIA, APOPTOSIS, AND NECROSIS, AND HIGHER PROLIFERATION THAN TUMOR SLICES CULTURED UNDER SIMILAR CONDITIONS
Dina Dorrigiv1,3, Kayla simeone1,2, Benjamin Péant1,2, Euridice Carmona1, Jennifer K. Dupont1, Anne-Marie Mes-Masson1,2, and Thomas Gervais1,3
1Centre Hospitalier de l’Université de Montréal, CANADA, 2Université de Montréal, CANADA, and 3Polytechnique Montréal, CANADA

Th7-762.f MICROFLUIDIC MODELS FOR NATURAL KILLER/CANCER CELL INTERACTIONS IN METASTASIS
Heather E. Bomberger, Behiye Kodal, Martin Felices, and David K. Wood
University of Minnesota, USA

Th8-862.f PARALLELIZED MICROFLUIDIC THIN CELL TRAPPERS FOR EFFECTIVELY SELECTING BLOOD CIRCULATING TUMOR CELLS
Natsumi Shimmyo, Makoto Furuhata, Masumi Yamada, Rie Utoh, and Minoru Seki
Chiba University, JAPAN

f - Diagnostics, Drug Testing & Personalized Medicine
Neurobiology/Neuroscience

W6-664.f SPATIALLY RESOLVED MICROFLUIDICS FOR STIMULATING LOCAL ISCHEMIA IN BRAIN TISSUE
Michael T. Cryan, Yuxin Li, and Ashley E. Ross
University of Cincinnati, USA

Th7-763.f WIRELESS BIODEGRADABLE NERVE STIMULATORS WITH SOFT CUFF ELECTRODE
Kyung Su Kim, Seunghun Han, and Jahyun Koo
Korea University, KOREA
M1-164.f POINT-OF-CARE DETECTION OF CIRCULATING HISTONES FOR INTERNAL TRAUMA DIAGNOSIS
Micaela L. Everitt and Ian M. White
University of Maryland, College Park, USA

Th8-863.f FINGER-DRIVEN PUMP ASSISTED MICROFLUIDIC PLATFORM FOR COLORIMETRIC DETECTION OF LITHIUM
Angelo Traina¹, Han G.E. Gardeniers², and Burcu Gumuscu³
¹University of Roma "La Sapienza", ITALY, ²University of Twente, THE NETHERLANDS, and ³Eindhoven University of Technology, THE NETHERLANDS

M1-165.f POINT-OF-CARE SOLUTION FOR THERAPEUTIC DRUG MONITORING ENABLED BY INTEGRATING FO-SPR READOUT INTO A SELF-POWERED MICROFLUIDIC PLATFORM
Henry Ordutowski, Jiahuan Qu, Ruben Verbruggen, Francesco Dal Dosso, Saba Safdar, Nick Geukens, Debby Thomas, Dragana Spasic, and Jeroen Lammertyn
KU Leuven, BELGIUM

M2-264.f A MICROFLUIDIC 3-PART DIFFERENTIAL SORTER
Mohammad Aghaamoo, Ruoyu Jiang, Braulio Cardenas Benitez, and Abraham Lee
University of California, Irvine, USA

M2-265.f WHOLE BLOOD PROFILING REVEALS BIOPHYSICAL IMMUNE RESPONSE SIGNATURES FOR CLINICAL TRIAGE
Kewin Kwek, Rohan Vernekar, Mui Teng Chua, Kai Yun Quek, Greg Suton, Timm Krueger, Win Sen Kuan, and Jongyoon Han
Singapore-MIT Alliance for Research and Technology (SMART) Centre, SINGAPORE

T3-365.f A SENSOR SURFACE ENGINEERING METHODOLOGY FOR NONINVASIVE WEARABLE ELECTROACTIVE DRUG MONITORING
Shuyu Lin, Wenzhuo Yu, Bo Wang, Yichao Zhao, Ke En, Jialun Zhu, and Sam Emaminejad
University of California, Los Angeles, USA

T4-465.f A WEARABLE MICROFLUIDIC SYSTEM FOR HIGH SIGNAL-TO-NOISE RATIO SWEAT RATE SENSING VIA PROGRAMMABLE MICROBUBBLE GENERATION AND TRACKING
Haisong Lin, Shuyu Lin, Jorge E.D.D. Suarez, Harish Athavan, Yibo Wang, Wenzhuo Yu, and Sam Emaminejad
University of California, Los Angeles, USA

W5-564.f AN EX VIVO TUMOR-DERIVED MODEL TO STUDY THE EFFECT OF THERAPEUTIC AGENTS USED FOR THE TREATEMENT OF CANCER PATIENTS
Kayla Simeone, Peant Benjamin, Jennifer Kendall-Dupont, Euridice Carmona, Diane Provencher, Fred Saad, Thomas Gervais, and Anne-Marie Mes-Masson
Université de Montréal, CANADA

W6-665.f INDEX MATCHED MICROFLUIDIC DEVICES FOR PRECISE MEASUREMENT OF SINGLE CELL MASS
Edward R. Polanco, Justin Griffin, and Thomas A. Zangle
University of Utah, USA
MECHANICAL PROPERTIES OF HYDROGEL MICRONEEDLES FOR INTERSTITIAL FLUID SAMPLING
Emilee Madsen and Jacqueline C. Linnes
Purdue University, USA

MICROPHYSIOLOGICAL DRUG-SCREENING PLATFORM FOR PERSONALIZED LEUKEMIA TREATMENT
Furkan Gökçe¹, Mario M. Modena¹, Beat C. Bornhauser², and Andreas Hierlemann¹
¹ETH Zürich, Basel, SWITZERLAND and ²University Children's Hospital Zürich, SWITZERLAND

f - Diagnostics, Drug Testing & Personalized Medicine
Pathogen Detection & Antibiotics

MINIATURIZED DEVICE FOR PERFORMING PCR, INTEGRATED WITH AN ELECTROCHEMICAL DNA BIOSENSOR FOR DETECTION OF CORYNEBACTERIUM DIPHTHERIAE
Kasper Marchlewicz¹,²,³, Iga Ostrowska¹, Zuzanna Iwon¹, Robert Ziolkowski¹, Kamil Zukowski³, Elzbieta Jastrzebska¹, Zbigniew Brzozka¹, and Elzbieta Malinowska¹,³
¹Warsaw University of Technology, POLAND, ²University of Warsaw, POLAND, and ³Centre of Advanced Materials and Technologies CEZAMAT, POLAND

VIRUS IDENTIFICATION BY EASY TO FABRICATE NANOPORE-CHIP USING ULTRATHIN GLASS-FILM AND OPTICAL BONDING
Takatoki Yamamoto
Tokyo Institute of Technology, JAPAN

PORTABLE MICROSCALE PLATFORM FOR MALARIA AND ANTIMALARIAL RESISTANCE SCREENING IN RESOURCE-LIMITED SETTINGS
Shreya Deshmukh¹, Oswald Byaruhanga², Patrick Tumwebaze², Bryan Greenhouse³, Elizabeth Egan¹, and Utkan Demirci¹
¹Stanford University, USA, ²Infectious Diseases Research Collaboration, UGANDA, and ³University of California, San Francisco, USA

A MULTIPLEX GENETIC DIAGNOSTIC DEVICE INTEGRATED WITH VERTICAL PHASEGUIDES CAPABLE OF AUTONOMOUS DISPENSING FOR THE DETECTION OF ARBOVIRUS INFECTIONS
Daigo Natsuhara¹, Kisukey Tanaka¹, Hiroka Aonuma², Tatsuya Sakurai², Moeto Nagai¹, Hirotaka Kanuka², and Takayuki Shibata¹
¹Toyohashi University of Technology, JAPAN and ²Jikei University School of Medicine, JAPAN

QUANTIFYING BACTERIAL SPORE GERMINATION BY IMPEDANCE CYTOMETRY FOR ASSESSING HOST MICROBIOTA SUSCEPTIBILITY
John H. Moore, Armita Salahi, Carlos Honrado, Christopher Warburton, Cirle Warren, and Nathan Swami
University of Virginia, USA

NANO/MICROFLUIDIC DEVICE FOR EFFICIENT BACTERIA CAPTURE
Tamer Abdelfattah¹, Mahsa Jalali¹, Roozbeh Siavash Moakhar¹, Sahar S. Mahshid², and Sara Mahshid¹
¹McGill University, CANADA and ²University of Toronto, CANADA

RAPID AMPLIFICATION OF FEMTOGRAMS OF DNA WITH HIGH PURITY IN DIGITAL MICROFLUIDICS FOR SEQUENCING
Yuguang Liu, Patricio Jeraldo, Helena Mendes-Soares, Thao Masters, Heidi Nelson, Robin Patel, Nicholas Chia, and Marina Walther-Antonio
Mayo Clinic, USA
W5-565.f AN AUTOMATED MICROFLUIDIC DIAGNOSTICS PIPELINE FOR INFECTIOUS DISEASE DETECTION IN LOW RESOURCE SETTINGS
Miren Urrutzia Iturritza, Giulia Gaudenzi, Ahamad Saleem Akhtar, Inês Fernandes Pinto, Noa Lapins, Aman Russom, and Haakan Joensson
KTH Royal Institute of Technology, SWEDEN

W5-566.f RAPID BACTERIA ENRICHMENT AND DIAGNOSIS OF ANTIBIOTIC RESISTANCE FROM URINE SAMPLE
Yuetao Li1, Andrew Glidle1, Julien Reboud1, Jing Zhang1, Yuanshuai Zhu1, Jon Cooper1, Wei Huang2, and Huabing Yin1
1University of Glasgow, UK and 2University of Oxford, UK

W6-666.f CELL-FREE, CRISPR/CAS-BASED PAPER DIAGNOSTICS FOR FOOD AND WATERBORNE PATHOGEN DETECTION
Helena D.P. Guixe1, Michael S. Wiederoder2, Shannon K. McGraw2, and James J. Collins1
1Wyss Institute for Biologically Inspired Engineering, USA and 2US Army CCDC Soldier Center, USA

W6-667.f RESPIDISK: A POINT-OF-CARE PLATFORM FOR FULLY AUTOMATED DETECTION OF RESPIRATORY TRACT INFECTION PATHOGENS IN CLINICAL SAMPLES
Markus Rombach1, Sebastian Hin1, Mara Specht1, Benita Johannsen1, Jan Lüddecke1, Nils Paust1, Roland Zengerle1, and Konstantinos Mitsakakis2
1Hahn-Schickard, GERMANY and 2University of Freiburg, GERMANY

Th7-765.f DIRECT ISOLATION AND DETECTION OF PATHOGENIC BACTERIA USING A NANOGAP DEVICE
Jung Y. Han, Michael Yeh, and Don L. DeVoe
University of Maryland, College Park, USA

Th7-766.f RNA/DNA AMPLIFICATION METHODS FOR THE DETECTION OF BACTERIA AND VIRUS THROUGH AN OPTOELECTRONIC LAB-ON-CHIP
Francesca Costantini1, Nicola Lovecchio2, Lorenzo Iannascoli2, Valeria Scala1, Francesco Faggioli1, Nicoletta Pucci1, Stefania Loreti1, Giampiero deCesare2, Augusto Nascetti2, and Domenico Caputo2
1CREA-DC Research Centre for Plant Protection and Certification, ITALY and 2Sapienza University of Rome, ITALY

Th8-865.f HIGH EFFICIENT AND SELECTABLE CONCENTRATION OF BACTEREMIA AND RAPID BACTERIAL ANTIBIOTIC SUSCEPTIBILITY TEST THROUGH ELECTROKINETIC CONCENTRATION MICRODEVICE
Kuan Hung Chen1, Shih-Han Lee1, Chun-Wei Lee1, Tseren-Onolt Ishdorj2, and Fan-Gang Tseng1,3
1National Tsing Hua University, TAIWAN, 2Mongolian University of Science and Technology, MONGOLIA, and 3Academia Sinica, TAIWAN

Th8-866.f SURFACE-ENHANCED RAMAN SPECTROSCOPY BASED DETECTION OF BETA-LACTAMASE ACTIVITY IN SMALL SAMPLES OF RESISTANT E. COLI
Shannon H. Hilton, Martha David, Connor Hall, and Ian M. White
University of Maryland, College Park, USA

f - Diagnostics, Drug Testing & Personalized Medicine
Testing for COVID-19, Rapid Virus Testing, Pandemic Management

M1-168.f LAMP BASED DETECTION OF SARS-COV-2 WITH LOW-COST OFF-THE-SHELF COMPONENTS
Sreejith Kamalalayam Rajan, Muhammad Umer, Narshone Soda, Surasak Kasetsirikul, Muhammad J.A. Shiddiky, and Nam-Trung Nguyen
Griffith University, AUSTRALIA
M2-267.f 3D-PRINTED CAPILLARIC CHIP FOR INSTRUMENTATION-FREE, RAPID, AND QUANTITATIVE COVID-19 SEROLOGICAL TESTING USING SALIVA
Oriol Ymbern, Ahmad Sohrabi, Azim Parandakh, Vahid Karamzadeh, Johan Renault, Marziye Mirbagheri, Zijie Jin, Justin Lessard-Wajcer, Jay Pimprikar, Molly Shen, Lorenna Oliveira, Yiannis Paschalidis, Andy Ng, and David Juncker
McGill University, CANADA

M2-268.f LATERAL FLOW ASSAY FOR THE DETECTION OF NOROVIRUS USING PEPTIDE-COATED GOLD NANOPARTICLES
Taeyeong You, Woojin Jeong, Sun Min Kim, and Tae-Joon Jeon
Inha University, KOREA

T3-368.f A MICROFLUIDIC APPROACH TO RAPID CRISPR-BASED DETECTION OF SARS-COV-2 RNA
Ashwin Ramachandran, Diego A. Huyke, Eesha Sharma, Malaya K. Sahoo, Niaz Banaei, Benjamin A. Pinsky, and Juan G. Santiago
Stanford University, USA

T3-369.f MICRO-RAPID AUTONOMOUS ANALYTICAL DEVICE FOR SARS-COV-2 DETECTION
Jacqueline C. Linnes, Navaporn Sritong, Ashlee J. Colbert, and Karin F.K. Ejendal
Purdue University, USA

T4-468.f AN ADAPTABLE, MASS PRODUCTION CAPABLE, MICROFLUIDIC MIXER FOR POINT OF CARE SAMPLE PREP
Priscilla Delgado, Pranav Dorbala, Abhijit Ravindran, and David Myers
Emory University, USA

W5-567.f DETECTION OF AVIAN INFLUENZA VIRUS AND ITS ANTIBODY BY FLUORESCENCE POLARIZATION IMMUNOASSAY
Keine Nishiya1, Yohei Takeda2, Masatoshi Maeki1, Akihiko Ishida1, Hirofumi Tani1, Koji Shigemura3, Akihide Hibara4, Haruko Ogawa2, and Manabu Tokeshi1
1Hokkaido University, JAPAN, 2Obihiro University of Agriculture and Veterinary Medicine, JAPAN, 3Tianma Japan, Ltd., JAPAN, and 4Tohoku University, JAPAN

W6-668.f ELECTROCHEMICAL CAPILLARY-FLOW IMMUNOASSAY FOR THE DETECTION OF ANTI-SARS-COV-2 ANTIBODIES
Isabelle C. Samper1, Ana Sanchez-Cano2, Wisarut Khamcharoen3, Ilhoon Jang1, Weena Siangproh3, Eva Baldrich2, Brian J. Geiss1, David S. Dandy1, and Charles S. Henry1
1Colorado State University, USA, 2Universitat Autònoma de Barcelona, SPAIN, and 3Srinakharinwirot University, THAILAND

Th7-767.f HANDHELD LIGHTWEIGHT BATTERY-OPERATED REAL-TIME PCR DEVICE FOR COVID-19 DIAGNOSIS
Geoffrey Mulberry, Matthew Moench, and Brian N. Kim
University of Central Florida, USA

Th8-867.f HIGHLY PERFORMING POINT-OF-CARE MOLECULAR TESTING FOR SARS-COV-2 WITH RNA EXTRACTION AND ISOTHERMAL AMPLIFICATION
Etienne Coz1, Pierre Garnier1, Eliaa Martin1, Jean Claude Manuguerra2, Elodie Brient Litzler2, Vincent Enouf2, Daniel Felipe Gonzalez Obando2, Jean Christophe Olivo Marin2, Fabrice Monti1, Sylvie Van der Werf2, and Patrick Tabeling2
1Institut Pierre-Gilles de Gennes, FRANCE and 2Institut Pasteur, FRANCE
Diagnostics, Drug Testing & Personalized Medicine

Drug Screening and Development

M1-169.f
MICROFLUIDIC GRADIENT GENERATOR FOR DRUG SCREENING APPLICATIONS
Arian Jaberi, Amir Monemian Esfahani, Ali Tamayol, and Ruiguo Yang
University of Nebraska, Lincoln, USA

M2-269.f
MICROFLUIDIC IMMOBILIZED ENZYME REACTOR FOR DETERMINING THE ELIMINATION OF ENVIRONMENTAL DRUG RESIDUES IN FISH
Vera Kouhi, Tea Pihlaja, Elisa Ollikainen, and Tiina Sikanen
University of Helsinki, FINLAND

T4-469.f
"**CUBOIDS**" FOR MULTIPLEXED MICROFLUIDIC DRUG TESTING OF INTACT TISSUES
Adán D. Rodríguez, Lisa Horowitz, and Albert Folch
University of Washington, USA

W5-568.f
ARTIFICIAL BRAIN "CELLS-ON-A-CHIP" FOR DRUG PERMEABILITY PREDICTION
Jaime L. Korner and Katherine S. Elvira
University of Victoria, CANADA

W6-669.f
DROPLET-BASED APPROACH TO HIGH SPEED DRUG DISCOVERY
Stacey Markovic¹, Ryan A. Dubay¹², Peter Hsi¹, Nerses J. Haroutunian¹, Cassie M. Bryan¹, Kettner Griswold Jr.¹, Eric M. Darling², Andrew P. Magyar¹, and Vishal Tandon¹
¹*Draper Laboratory, USA* and ²*Brown University, USA*

Th7-768.f
ESTABLISHMENT OF AN AUTOMATIZED MICROFLUIDIC PLATFORM FOR SCREENING OF NOVEL HBV CAPSID ASSEMBLY MODULATORS (CAMS)
Tamás Vermes¹, Thomas Henkel², Helmut Buschmann³, Miquel A. Pericàs¹, Esther Alza¹, Thomas Goldner³, and Andreas Urban³
¹*Institut Català d'Investigació Química, SPAIN*, ²*Leibniz Institute of Photonic Technology, GERMANY*, and ³*AiCuris, GERMANY*

Th8-868.f
HIGH-THROUGHPUT GENERATION OF UNIFORM CEREBRAL BRAIN ORGANOIDS
Kyungwon Park, Yong Hun Jung, and Seok Chung
Korea University, KOREA

f - Diagnostics, Drug Testing & Personalized Medicine

Drug Delivery

T3-370.f
2D AND 3D TUMOR MODELS ON-A-CHIP TO EVALUATE EFFECTIVENESS OF PHOTODYNAMIC THERAPY (PDT) WITH GRAPHENE OXIDE CONJUGATES
Agnieszka Zuchowska, Bartlomiej Dabrowski, Artur Kasprzak, Ksenia Kaminska, Magdalena Poplawska, and Zbigniew Brzozka
Warsaw University of Technology, POLAND

T4-470.f
A NOVEL MICROSYSTEM FOR STUDYING THE EFFECTIVENESS OF ELECTROCHEMOTHERAPY AND CHEMOTHERAPY PROCEDURES
Sandra Skorupska, Ilona Grabowska-Jadach, Malgorzata Pieta, Artur Dybko, and Zbigniew Brzozka
Warsaw University of Technology, POLAND

W5-569.f
DRUG LOADING INTO EXTRACELLULAR VESICLE VIA TONICITY CONTROL
Chaeun Lee¹², Sumit Kumar², Juhee Park³, Junyoung Kim¹², and Yoon-Kyong Cho¹²
¹*Ulsan National Institute of Science and Technology (UNIST), KOREA* and ²*Institute for Basic Science (IBS), KOREA*
W6-670.f HIGH-THROUGHPUT MICROFLUIDICS FOR EVALUATING MICROBUBBLE ENHANCED DELIVERY OF CANCER THERAPEUTICS IN SPHEROID CULTURES
Matthew D. Bourn¹, Damien V.B. Batchelor¹, Nicola Ingram², James R. McLaughlan¹, P. Louise Coletta², Stephen D. Evans¹, and Sally A. Peyman¹
¹University of Leeds, UK and ²St James’ University Hospital, UK

Th7-769.f MASSIVELY PARALLEL INTRACELLULAR DELIVERY USING TITANIUM OXIDE NANOTUBES
Loganathan Mohan¹, Srabani Kar², Ren Hattori¹, Miho Ishii Teshima¹, Kavitha Illath³, Anuj Tiwari¹, Tuhin Subhra Santra³, Takayuki Shibata¹, and Moeto Nagai¹
¹Toyohashi University of Technology, JAPAN, ²University of Cambridge, UK, and ³Indian Institute of Technology Madras, INDIA

M1-170.f INSTANT LABELING OF THERAPEUTIC STEM CELLS WITH MICROFLUIDICS FOR IN VIVO TRACKING
Todd Sulchek, Hossein Nejadnik, Kyung Oh Jung, Ashok Theruvath, Anna Liu, Wei Wu, Louise Kiru, Guillem Pratx, and Heike Daldrup-Link
Georgia Institute of Technology, USA

M2-270.f USING RBC SHAPES TO DISTINGUISH BETWEEN SICKLE CELL DISEASE AND TRAIT SAMPLES
Riddha Manna, Oshin Sharma, Anish Mahto, Srushti Singh, and Debjani Paul
Indian Institute of Technology. Bombay, INDIA

T3-371.f PORTABLE AND AUTOMATED ANALYZER FOR RAPID AND HIGH PRECISION IN VITRO DISSOLUTION OF DRUGS
Zhongmei Chi¹, Yunxiang Feng², and Li Yang¹
¹Northeast Normal University, CHINA and ²Jingke-Oude Science and Education Instruments Co., Ltd, CHINA

Th8-869.f DEVELOPMENT OF A METHOD FOR CELL DELIVERY INTO THE SUBRETINAL SPACE USING BIODEGRADABLE NANOSHEETS
Kazuya Yamashita, Hideto Kojima, Nobuhiro Nagai, Toshiaki Abe, and Hirokazu Kaji
Tohoku University, JAPAN

g - Other Applications of Microfluidics
Artificial Intelligence and Microfluidics

T4-471.g AI-ASSISTED MICROFLUIDIC STIFFNESS GRADIENT FOR ANALYSIS OF 3D CELL CULTURES IN HYDROGEL BEADS
Vasileios Anagnostidis, Dalia Al-Saadi, and Fabrice Gielen
University of Exeter, UK

W5-570.g AI-GUIDED MICROFLUIDIC SYNTHESIS OF COLLOIDAL LEAD HALIDE PEROVSKITE QUANTUM DOTS
Robert W. Epps, Amanda A. Volk, Kameel Abdel-Latif, Kristofer G. Reyes, and Milad Abolhasani
North Carolina State University, USA

W6-671.g DEEP LEARNING CLASSIFICATION OF PARTICLE DEPTH FOR DEFOCUSING 3D-3C MICRO-PTV
Evan Lammertse¹, Martin Sauzade¹, Hongxiao Li², Jun Kong², and Eric Brouzes¹
¹Stony Brook University, USA and ²Georgia State University, USA
<table>
<thead>
<tr>
<th>Session</th>
<th>Title</th>
<th>Authors</th>
<th>Affiliations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Th7-770.g</td>
<td>FLOW FOCUS-FREE IMAGE FLOW CYTOMETRY BY IMAGE PROCESSING AND DATA ESTIMATION</td>
<td>Arpith Vedhanayagam and Amar S. Basu</td>
<td>Wayne State University, USA</td>
</tr>
<tr>
<td>Th8-870.g</td>
<td>INTELLIGENT ON-CHIP ANALYSIS OF THROMBOSIS IN ECMO WITH A GOAT MODEL</td>
<td>Yuqi Zhou, Atsushi Yasumoto, Masako Nishikawa, Yuya Nobori, Yi Wang, Yutaka Yatomi, Masaki Anraku, and Keisuke Goda</td>
<td>University of Tokyo, JAPAN</td>
</tr>
<tr>
<td>M1-171.g</td>
<td>COTTON-BASED MICROFLUIDIC EVAPORATOR TO ENHANCE THE PERFORMANCE OF A THERMOELECTRIC DEVICE</td>
<td>Liang Jun Zheng, Dong Hee Kang, Na Kyong Kim, and Hyun Wook Kang</td>
<td>Chonnam National University, KOREA</td>
</tr>
<tr>
<td>M2-271.g</td>
<td>FLUORESCENT VISUALIZATION OF OIL DISPLACEMENT IN A MICROFLUIDIC DEVICE FOR ENHANCED OIL RECOVERY APPLICATIONS</td>
<td>Khashayar R. Bajgiran, Hannah C. Hymel, Shayan Sombolestani, Nora Safa, Nathalie Dante, James A. Dorman, Dandina Rao, and Adam T. Melvin</td>
<td>Louisiana State University, USA</td>
</tr>
<tr>
<td>T3-372.g</td>
<td>UNDERSTANDING POLYMER RETENTION IN POROUS FORMATIONS USING MICROFLUIDICS</td>
<td>Antonia Sugar, Maged F. Serag, Ulrich Buttner, Satoshi Habuchi, and Hussein Hoteit</td>
<td>King Abdullah University of Science & Technology (KAUST), SAUDI ARABIA</td>
</tr>
<tr>
<td>T4-472.g</td>
<td>THREE DIMENSIONAL HYDRODYNAMIC FOCUSING IN A MONOLITHIC FUSED SILICA MICROFLUIDIC DEVICE</td>
<td>Diego A. Huyke¹, Ashwin Ramachandran¹, Thomas Kroll², Daniel P. DePonte², and Juan G. Santiago¹</td>
<td>¹Stanford University, USA and ²SLAC National Accelerator Lab, USA</td>
</tr>
<tr>
<td>W5-571.g</td>
<td>AEROSOLIZED DROPLETS AND OPEN MICROFLUIDICS FOR CAPTURING AT-HOME AIRBORNE EXPOSURES</td>
<td>Ulri N. Lee, Tammi L. van Neel, Fang Y. Lim, Jean Berthier, Erwin Berthier, and Ashleigh B. Theberge</td>
<td>University of Washington, USA</td>
</tr>
<tr>
<td>W6-672.g</td>
<td>REPROGRAMMABLE FERROMAGNETIC DOMAINS FOR RECONFIGURABLE SOFT MAGNETIC ACTUATORS</td>
<td>Hyeonseo Song, Hajun Lee, Jaebyeong Lee, Jun Kyu Choe, Suwoo Lee, Jee Yoon Yi, Sunghoon Park, Jung-Woo Yoo, Min Sang Kwon, and Jiyun Kim</td>
<td>Ulsan National Institute of Science & Technology (UNIST), KOREA</td>
</tr>
</tbody>
</table>
TOWARDS ASTROBIOLOGICAL NANOSATELLITE MISSION – LOC INSTRUMENTATION FOR CELL CULTIVATION RESEARCH IN SPACE

Agnieszka Podwin¹, Patrycja Sniadek¹, Adrianna Graja¹², Bartosz Kawa¹, Marcin Bialas¹, Wojciech Kubicki¹, Marta Jurga³, Agata Kaczmarek³, Krzysztof Matkowski³, Rafal Walczak¹, and Jan Dziuban¹

¹Wroclaw University of Science and Technology, POLAND, ²SatRevolution S.A., POLAND, and ³Wroclaw University of Environmental and Life Sciences, POLAND